
UP 9000 Series 300 and 800 Computers

Programming and Protocols

for NFS Services

HP 9000 Series 300 and 800 Computers

Programming and Protocols
for NFS Services

FliDW HEWLETT
a:~ PACKARD

Manual Part Number: 81013-90002
Printed in U.S.A., September 1989

Notice

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1989, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as
set forth in paragraph (b)(3)(B) of the Rights in Technical Data and Software
clause in DAR 7-104.9(a).

© Copyright 1980, 1984, AT&T, Inc.

© Copyright 1979, 1980, 1983, The Regents of the University of California.

© Copyright, 1979, 1987, Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

DEC® and V AX® are registered trademarks of Digital Equipment Corp.

MS-DOS®· is a U.S., registered trademark of Microsoft Corporation.

ii

UNIX@ is a u.s. registered trademark of AT&T in the U.S.A and in other
countries.

NFS is a trademark of Sun Microsystems, Inc.

Hewlett-Packard Co.
3404 E. Harmony Rd.
Fort Collins, CO 80525 U.S.A.

iii

Printing History

First Edition September 1989

iv

Contents

Chapter 1: Documentation Overview
Contents 1-2

Chapter 1: Documentation Overview 1-2
Chapter 2: NFS Services Overview 1-2
Chapter 3: RPC Programming Guide 1-2
Chapter 4: RPCGEN Programming Guide 1-2
Chapter 5: XDR Protocol Specification 1-2
Chapter 6: RPC Protocol Specification 1-2
Chapter 7: yP Protocol Specification 1-3
Index 1-3

Conventions 1-4
Documentation Guide 1-5

Chapter 2: NFS Services Overview
Remote Procedure Call (RPC) 2-3
Remote Procedure Call Protocol Compiler (RPCGEN) 2-5
External Data Representation (XDR) 2-5
Yellow Pages (YP) 2-6

yP ASCII Source Files 2-7

Chapter 3: RPC Programming Guide
Network Communication with the Remote Procedure Call 3-2

Layers of RPC 3-3
Highest RPC Layer 3-4
Intermediate RPC Layer -.. 3-6

callrpc() 3-7
registerrpc() 3-10
Program Numbers 3-11
Pass Arbitrary Data Types 3-13

Lowest RPC Layer 3-18
RPC Server Side 3-19

v

vi

Chapter 3: RPC Programming Guide (continued ...)
Memory Allocation with XDR 3-22
RPC Calling Side 3-25

Additional RPC Features 3-28
Select on the Server Side 3-28
Broadcast RPC 3-28

Broadcast RPC Synopsis 3-30
Batching 3-31
Authentication 3-36

RPC Client Side 3-36
RPC Server Side 3-37
Using inetd 3-40

Additional RPC Examples 3-42
Versions 3-42
TCP 3-44
Callback Procedures 3-47

Synopsis of RPC Routines 3-53

Chapter 4: RPCGEN Programming Guide
Introduction•............................ 4-1
The Remote Procedure Call Protocol Compiler 4-2
Converting Local Procedures into Remote Procedures 4-2
Generating XDR Routines 4-9

Files you must produce 4-10
Files produced by RPCGEN .. 4-10

The Protocol Description File (The Input File) 4-11
The Header File 4-12
The Client Side File 4-13
The Client Side Subroutines File . 4-16
The Server Side Skeleton File• 4-17
The Server Side Function File 4-19
XDR Routine File 4-20
Compiling the Files 4-22
RPCGEN Syntax 4-24
The C Preprocessor 4-26

RPC Language 4-27
Definitions 4-28

Chapter 4: RPCGEN Programming Guide (continued ...)
Structures 4-28
Unions 4-29
Enumerations 4-30
Typedef 4-31
Constants 4-32
Programs 4-32
Declarations . 4-33

Simple Declarations . 4-33
Fixed-Length Array Declarations 4-34
Variable-Length Array Declarations 4-34
Pointer Declarations 4-35

Special Cases 4-35
RPCGEN Error Messages 4-37

Command Line Error Messages 4-37
RPCGEN Execution Error Messages 4-37
Parsing Error Messages ...'o...................... 4-38

Expecting a Keyword 4-39
Array of Pointers 4-39
Bad Union 4-40
Opaque Declarations 4-40

String Declaration Error 4-41
Void Declarations 4-41
Unknown Types 4-42
Illegal Characters 4-42
Missing Quotes 4-43

General Syntax Errors 4-43

Chapter 5: XDR Protocol Specification
Justification ."................................ 5-2
XD R Library 5-7

XDR Library Primitives 5-12
Number Filters 5-12
Floating Point Filters 5-13
Enumeration Filters 5-13
NoData , 5-14
Constructed Data Type Filters 5-14

vii

Chapter 5: XDR Protocol Specification (continued ...)
Strings 5-15
Byte Arrays 5-16
Arrays 5-17
Opaque Data 5-21
Fixed Sized Arrays 5-21
Discriminated Unions ~ 5-23
Pointers . 5-25
Pointer Semantics and XDR 5-27

Non-filter Primitives 5-28
XDR Operation Directions 5-29

XDR Stream Access 5-30
Standard I/O Streams 5-30
Memory Streams 5-31
Record (TCP/lP) Streams 5-31

XDR Stream Implementation 5-34
XDR Object 5-34

XDR Standard . 5-37
Basic Block Size 5-37
Integer 5-37
Unsigned Integer 5-38
Enumerations 5-38
Bexlleans . 5-38
Floating Point and Double Precision 5-38
Opaque Data 5-40
Counted Byte Strings 5-40
Fixed Arrays 5-41
Counted Arrays 5-41
Structures 5-42
Discriminated Unions 5-42
Missing Specifications 5-43
Library Primitive / XDR Standard Cross Reference 5-43

Advanced XDR Topics 5-45
Linked Lists 5-45
Record Marking Standard 5-51

Synopsis of XDR Routines 5-52

viii

Chapter 6: RPC Protocol Specification
RPC Model 6-2

Transports and Semantics 6-3
Message Authentication 6-3

RPC Protocol Requirements 6-4
Remote Programs and Procedures 6-4
Authentication 6-6
Program Numbers 6-7
Additional RPC Protocol Uses 6-8

Batching 6-9
Broadcast RPC 6-9

RPC Message Protocol 6-10
Authentication Parameter Specification 6-14

NULL Authentication 6-15
UNIX2 Authentication 6-15

Record Marking Standard . 6-17
Portmapper Program Protocol . 6-18

RPC Protocol 6-18
RPC Procedures 6-18

Chapter 7: YP Protocol Specification
Map Operations 7-2

Remote Procedure Call (RPC) 7-2
External Data Representation (XDR) 7-3

yP Database Servers 7-5
Maps and Map Operations 7-5

Map Structure 7-5
Match Operation 7-5
Map Entry Enumeration 7-5
Entire Map Retrieval 7-6
Map Update 7-6

Master and Slave yP Database Servers 7-6
Map Propagation and Consistency 7-6

Functions to Aid in Map Propagation 7-6
yP Domains 7-7
yP Non-features 7-8

Map Update within the yP .••••...•........•...• 7-8

ix

Chapter 7: YP Protocol Specification (continued ...)
Version Commitment Across Multiple Requests 7-8
Guaranteed Global Consistency 7-8
Access Control 7-9

yP Database Server Protocol Definition 7-9
RPC Constants 7-9
Other Manifest Constants 7-10
Remote Procedure Return Values 7-11
Basic Data Structures 7-13
yP Database Server Remote Procedures 7-15

yP Binders 7-19
yP Binder Protocol Definition 7-20

RPC Constants 7-20
Other Manifest Constants 7-21
Basic Data Structures 7-22
yP Binder Remote Procedures 7-24

x

Documentation Overview

Before reading this manual, you should be familiar with the C programming
language and the HP-UX operating system. You should also have access to
the HP-UX Reference manuals.

1

You will find this manual helpful if you are a programmer writing applications
using yP (Yellow Pages), RPC (Remote Procedure Call), RPCGEN (Remote
Procedure Call Protocol Compiler), and XDR (eXternal Data
Representation).

Note The information contained in this manual applies to both
the Series 300 and Series 800 HP 9000 computer systems.
Any differences in installation, configuration, operation,
or troubleshooting are specifically noted.

If you are using NFS Services but are not writing
applications, refer to the Installing and Administering NFS
Services manual for system administration information.
For day-to-day use of NFS, refer only to the "Common
Commands" chapter of the Using NFS Services manual.

Documentation Overview 1-1

Contents
Refer to the following list for a brief description of the information contained
in each chapter and appendix.

Chapter 1: Documentation Overview
This chapter describes who should use this manual, what is in this manual, and
where to find more information.

Chapter 2: NFS Services Overview
This chapter provides a brief overview of the NFS Services product, including
RPC, RPCGEN, XDR, and yP facilities.

Chapter 3: RPC Programming Guide
This chapter provides instructions and examples for writing applications using
the RPC services. It also provides a synopsis of RPC routines to describe the
RPC functional interface.

Chapter 4: RPCGEN Programming Guide
This chapter describes the RPC Protocol Compiler. It provides instructions
and examples for writing RPC applications using the RPCGEN compiler.

Chapter 5: XDR Protocol Specification
This chapter describes the XDR protocols. It also provides a synopsis of XDR
routines to describe the XDR functional interface.

Chapter 6: RPC Protocol Specification
This chapter describes the RPC and portmap protocols.

1 - 2 Contents

Chapter 7: YP Protocol Specification
This chapter describes the yP protocols.

Index
The index provides a page reference to the subjects contained within this
manual.

Documentation Overview 1 - 3

Conventions
This manual uses the following format for entry instructions and examples.

Bold Text

Computer Text

Italic Text

EXAMPLE·

1 - 4 Conventions

emphasizes the word or point.

specifies a literal entry. You should enter the
text exactly as shown.

indicates that you should enter information
according to your requirements.

rpc dgram udp wait user sen;er program version name

Documentation Guide

ARPA Services: Daily Use

ARPA Services: System
Administration

C Programming Language

Commands and System Calls

Section 1: User Commands

,,::: .. :

Section 1M: System Maintenance
Section 2: System Calls
Section 3: Subroutines
Section 4: Special Files
Section 5: File Formats
Section 7: Miscellaneous Facilities
Section 9: HP -UX Glossary

HP 92223A Repeater

HP-UX: Installation

Using ARPA Services
Installing and Administering ARPA
Services
C Programming Guide, Jack
Purdum, Que Corporation,
Indianapolis, Indiana
The C Programming Language, Brian
W. Kernighan, Dennis M. Ritchie;
Prentice-Hall, Inc.
NS Services Reference Pages
HP-UX Reference Manuals

HP 92223A Repeater Installation
Manual
HP-UX Installation Manual/HP 9000
Series 300

Installing and Updating HP-UX/HP
9000 Series 800

Documentation Overview 1 - 5

lUll·········· ... !·.:.: .. : .. ·.::.
HP-UX: Operating System
(HP 9000)

HP-UX: System Administration

LAN Hardware:
Installation

Networking: General Information

NFS Services: Common Commands

NFS Services: Programming and
Protocols

NFS Services: System
Administration
- Configuration
- Installation
- Maintenance
- Migrating from NFS to RFA
- NFS in an HP-UX Cluster

Environment
- NFS Services vs. Local HP-UX
- Troubleshooting

1 - 6 Documentation Guide

HP-UX Concepts and Tutorials
HP-UX Installation Manual/HP 9000
Series 300
Installing and Updating HP-UX/HP
9000 Series 800
HP-UX Reference Manuals
HP-UX System Administrator's
Manual/HP 9000 Series 800
Beginner's Guide series for HP-UX
Introducing UNIX System V

HP-UX System Administrator's
ManuallHP 9000 Series 800

HP-UX Installation Manual/HP 9000
Series 300

Installing and Updating HP-UX/HP
9000 Series 800
HP 98643A LAN/300 Link LANIC
Installation Manual
LAN Cable and Accessories
Installation Manual
Networking Overview

Using NFS Services "Common
Commands" Chapter only

Programming and Protocols for NFS
Services
Installing and Administering NFS
Services

NS System Administration

ARPA System Administration

Installing and Administering NS
SeIVices

Installing and Administering ARPA
SeIVices

Documentation Overview 1 - 7

1-8

2

N FS Services Overview

The NFS (Network File System) Services product provides remote access to
shared file systems over local area networks. Nodes running NFS and sharing
files can range from personal computers and minicomputers to high
performance workstations and supercomputers. Almost any user command
(e.g., list, remove, copy) that can be performed locally will operate on the
attached remote NFS file system.

NFS nodes can access remote databases containing drawings, schematics,
netlists, models, or source code. This access method eliminates the need to
maintain consistency between multiple file copies and to store information
locally.

NFS features include the following.

• The NFS server can provide remote access privileges to a restricted set of
clients. Clients can attach a remote directory tree to any point on a local file
system.

• NFS is stateless; a server does not need to maintain state information about
any of its clients to function correctly. With stateless servers, a client need
only retry a request until the server responds; it does not need to know if a
server is not working.

NFS Services Overview 2-1

• Clients access server information and processes by using RPC (Remote
Procedure Call). RPC allows a client process to execute functions on a
server via a server process. Though these processes can reside on different
network hosts, the client process does not need to know about the
networking implementations.

• RPC uses the XDR (eXternal Data Representation) functionality to
translate machine dependent data formats (Le., internal representations) to
a universal format used by all network hosts using RPCIXDR.

• NFS also provides an optional Yellow Pages (YP) service that provides read
access to replicated databases. Note, yP also uses RPC and XDR library
routines.

2-2

Remote Procedure Call (RPC)
Clients make an RPC to

• access server information and

• request action from servers.

The RPC protocol allows a client process to request that a function be
performed by a server process. These processes can reside on different hosts
on the network, though server processes appear to be running on the client
node.

The client first calls an RPC function to initiate the RPC transaction. The
client system then sends an encoded message to the server. This message
includes all the data needed to identify the service and user authentication
information. If the message is valid (i.e., calls an existing service and the
authentication is accepted) the server performs the requested service and
sends a result message back to the client.

The RPC protocol is a high-level protocol built on top of low-level transports.
HP supports both the UDP/lP (user level and kernel level) and TCP/lP (user
level only) transport protocols for RPC.

The RPC protocol includes space for authentication parameters on every call.
The contents of the authentication parameters are determined by the Davor
(type of authentication used by the server and client). One server may support
several different flavors of authentication at once.

The pre-defined authentication flavors areAUTH_NULL andAUTH_UNIX.

NFS Services Overview 2 - 3

• AUTH_NULL (the default) passes no authentication information (null
authentication).

• AUTH _UNIX passes the UNIX! UID, GID, and groups with each call.

RPC provides a version number with each RPC request. Thus, one server can
simultaneously service requests for several different versions of the protocol.

Client Node Server Node

Client Process Server Proces s

",1.1 , I
RPe RPe

1
\....1 ,

I
XDR XDR

1
\.J ,

I
Network - - - -- Network

RPe and XDR Data Transfer

(1) UNIX (R) is a U.s. registered trademark of AT&T in the U.S.A. and other countries.

2-4 Remote Procedure Call (RPe)

Remote Procedure Call Protocol Compiler
(RPCGEN)
RPCGEN is a Remote Procedure Call compiler. It simplifies the creation of
RPC applications by eliminating the time-consuming and difficult task of
writing XDR routines. You have more time to debug your applications
without the need to debug network interface code.

RPCGEN compiles your remote program interface definitions, and produces
C output files which you may use to produce remote versions of applications.

External Data Representation (XDR)
RPC uses an XDR to translate machine-dependent data formats (i.e., internal
representations) to a universal format used by other network hosts using
XDR. Therefore, XDR enables heterogeneous nodes and operating systems
to talk with each other over the network.

The common way in which XDR represents a set of data types over a network
takes care of problems such as different byte ordering on different
communicating nodes. XDR also defines the size of each data type so that
nodes with different structural alignment can share a common format over the
network.

The XDR data definition language specifies the parameters and results of
each RPC service procedure that a server provides. The XDR data definition
language reads similarly to C language, although it contains a few new
constructs.

NFS Services Overview 2-5

Yellow Pages (VP)
yP is an optional distributed network lookup service that provides read access
to replicated databases.

Lookup Service:

Network Service:

Distributed:

yP maintains a set of databases for querying.
Programs can ask for the value associated with
a particular key or keys in a database.

Programs do not need to know the location of
data or how it is stored. Instead, they use a
network protocol to communicate with a
database server that knows those details.

yP is a collection of cooperating server
processes that provide yP clients access to
data. One yP master server propagates data
across the network to other servers. Thus, it
does not matter which server answers a request
because the answer is the same everywhere.

Since the yP interface uses RPC and XDR, the service may be available to
non-UNIX operating systems and machines from other vendors.

2-6 Yellow Pages (YP)

YP ASCII Source Files
yP databases are constructed from ASCII files usually found in fete. HP
provides some standard functions for accessing the ASCII files' information.
For example, the functions getgrent(3C) and getpwent(3C) are available to
retrieve entries from the Jete/group and /ete/passwd files, respectively. These
functions may also obtain data from yP databases, if the databases exist.

• By using the standard programmatic interfaces, you do not need to know
where and how the data is stored.

• If you write your own routines to retrieve data from these ASCII files rather
than using the standard functions, you may receive results that are different
from what the standard functions return. Note, HP does not support access
other than through the standard HP-UX library routines. Therefore, we
advise that you use the standard functions to access the ASCII files from
which the standard yP maps are built.

Refer to ypclnt(3C) and yppasswd(3N) for detailed information.

NFS Services Overview 2 - 7

2-8 Yellow Pages (YP)

RPe Programming Guide

This chapter will help you write network applications using RPCs (Remote
Procedure Calls), thus avoiding low-level system primitives based on sockets.
You must be familiar with the C programming language and should have a
working knowledge of networking.

3

Programs communicating over a network need a paradigm for communication.
A low-level mechanism might send a signal on the arrival of incoming packets,
causing a network signal handler to execute. A high-level mechanism would be
the Ada rendezvous. This method is the RPC paradigm in which a client
communicates with a server. The client first calls a procedure to send a data
packet to the server. When the packet arrives, the server

• extracts the procedure's parameters,

• computes the results,

• sends a reply message, and

• waits for the next call message.

You can use RPC to communicate between processes on the same node or on
different nodes. Note, this chapter only discusses the C interface.

RPe Programming Guide 3-1

Client Service
Program Daemon

'" callrpc() Machine 8 -
Function

Execute
Machine A Request

" Call
Service -

Executes

Return
,pervice

--- Answer
Request

Return
Completed ,

r Reply
Program I

Continues ~

Network Communication with the Remote Procedure

3-2

Layers of RPC
The RPC interface has three layers.

Highest Layer The highest layer uses the network and is transparent
to the programmer. For example, at this level a
program can contain a call to musers() to return the
number of users on a remote node. You do not have
to know that RPC is being used since you simply
make the call in a program Gust as you would call
maZloc() to allocate memory).

Intermediate Layer The middle-layer routines are for common
applications; you do not need to know about sockets.

To make RPC calls, use the registenpc() and
caZlrpc() routines. The registenpc() routine obtains a
unique system-wide number on the server; callrpc()
executes a remote procedure from the client. For
example, these routines are used to implement
musers().

Lowest Layer The lowest layer is for more sophisticated
applications that require altering the routine defaults.
You can explicitly manipulate sockets that transmit
RPC messages. HP recommends that you avoid this
layer unless the upper two layers are not adequate.

RPC Programming Guide 3 - 3

Highest RPC Layer
The following table lists the RPC service library routines available to
C programmers. (Refer to the NFS SeIVices Reference Pages for detailed
information.)

musers() Return the number of users on a remote node

IUsers() Return information about users on a remote node

havedisk() Determine if a remote node has a disc

rstat() Obtain performance data from a remote node

rwall() Write to the specified remote nodes

getmaster() Obtain the name of a yP master server

getrpcport () Obtain an RPC port number

yppasswd() Update the user password in Yellow Pages

The other RPC services (mount and spray) are not available as library
routines. They do, however, have RPC program numbers so you can invoke
them with callrpc() as discussed in the next section.

3 - 4 Highest RPe Layer

EXAMPLE: To determine how many users logged on to a remote node,
call the library routine rnusers().

'include <stdio.h>

rnain(argc, argyl
int argc;

{

}

char *argv[];

int nurn, rnusers();

if (argc < 2) {

}

fprintf(stderr, "usage: rnusers hostnarne\n");
exit(1) ;

if ((nurn = rnusers(argv[1]» < 0) {
fprintf(stderr, "error: rnusers\n");
exit(1) ;

}
printf("%d users on %s\n", nurn, argv[l]);
exit(O) ;

RPC library routines like rnusers() are in the RPC services library librpcsvc.a.
Thus, you should compile the above program to create the rnusers program as
follows.

% cc prograrn.c -0 rnusers -lrpcsvc

RPe Programming Guide 3-5

Intermediate RPC Layer
The intermediate RPC layer is the simplest interface that explicitly makes
RPC calls using the functions callrpc() and registerrpc().

A program number, version number, and procedure number define each RPC
procedure. The program number defines a group of related remote
procedures, each of which has a different procedure number. Each program
also has a version number, so when a minor change is made to a remote
service (e.g., adding a new procedure), you do not have to assign a new
program number. When you want to call a remote procedure (e.g., to find the
number of remote users) you look up the appropriate program, version, and
procedure numbers similar to when you look up the name of the memory
allocator when wanting to allocate memory.

3 - 6 Intermediate RPe Layer

EXAMPLE: This example shows you a way of using the intermediate
RPC layer to obtain the number of remote users.

#include <stdio.h>
'include <rpcsvc/rusers.h>

main(argc, argyl
int argc;

{

}

callrpc()

char *argv [] ;

unsigned long nusers;

if (argc < 2) {

}

fprintf(stderr, "usage: nusers hostname\n");
exit(l) ;

if (callrpc(argv[l],
RUSERSPROG, RUSERSVERS, RUSERSPROC NUM,
xdr_void, 0, xdr_u_long, &nusers) 1= 0) {

fprintf(stderr, "error: callrp~\n");
exit(l) ;

}
printf("%d users on %s\n", nusers, argv[l]);
exit(O) ;

The simplest routine in the RPC library for making remote procedure calls is
callrpc(); it has eight parameters.

• The first parameter is the name of the remote node.

• The second through fourth parameters are the program, version, and
procedure numbers.

RPe Programming Guide 3 - 7

• The fifth and sixth parameters define the argument of the RPC call.

• The final two parameters define the results of the call.

The callrpc() function returns zero if it completes successfully or nonzero if it
does not.

The meaning of the return values is an enum clnt_stat cast into an integer.
You can find the enum clnt _stat definition in <rpc/cint.h >.

Since data types may be represented differently on different nodes,
callrpc() needs both the type of the RPC argument and a pointer to the
argument. (Note, callrpc() needs similar information for the result.)

For RUSERSPROC_NUM, the return value is an unsigned long. Therefore,
callrpc() has xdr_u_long as its seventh parameter, which means the result is of
type unsigned long. The final parameter is &nusers, which is a pointer to where
the unsigned long result will be placed. Since RUSERSPROC _ NUM takes no
argument, the parameters defining the callrpc() argument are zero (0) and
xdr void.

If callrpc() does not receive an answer after trying several times to deliver a
message, it returns with an error code. The delivery mechanism is UDP (User
Datagram Protocol). Methods for adjusting the number of retries or for using
a different protocol require you to use the RPC library lowest layer. The
remote server procedure that would reply to the call in the above program
might look like the following procedure:

EXAMPLE:

char *
nuser(indata)
char *indata;
{
static int nusers;

/*
* code here to compute the number of users
* and place result in variable nusers
*/

return((char *)&nusers);
}

3-8 Intermediate RPe Layer

This procedure takes one argument, which is a pointer to the input of the
RPC (ignored in the example). It also returns a pointer to the result. In C,
character pointers are the generic pointers, so both the input argument and
the return value are cast to char *.
A server usually registers all the RPC procedures it plans to handle and then
goes into an infinite loop waiting to service requests. If there is only a single
procedure to register, the main body of the server would look as follows.

'include <stdio.h>
'include <rpcsvc/rusers.h>

char *nuser();

main(
{

}

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
nuser, xdr void, xdr u long);

svc run(); /* never returns */
fprTntf(stderr, "Error: svc_run returned!\n");
exit(1) ;

RPC Programming Guide 3 - 9

registerrpc()
The registenpc() routine establishes which C procedure corresponds to each

RPC procedure number.

• The first three parameters, RUSERPROG, RUSERSVERS, and
RUSERSPROC _ NUM are the program, version, and procedure numbers of
the remote procedure to be registered. In the previous example, nuser
argument is the name of the C procedure implementing the remote
procedure.

• The xdr _void and xdr _u _long types are the type of input to and output from
the procedure.

Only the UDP transport mechanism is used by registenpc(); thus, it is
always safe to use registenpc() in conjunction with calls generated by callrpc().

Note The UDP transport mechanism can only deal with
arguments and results that are less than 8K bytes in length.

3-10 Intermediate RPe Layer

Program Numbers
Program numbers are assigned in groups of Ox20000000 as follows.

o - 1 fffffff defi ned by Sun
20000000 - 3fffffff defined by user
40000000 - 5fffffff transient
60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

o - ImmT defined by Sun l

Sun Microsystems, Inc. administers the first group of numbers which should be
identical for all systems. If you develop an application of general interest, that
application should receive an assigned number in the first range.

20000000 - 3f11l1lJ defined by user

The second group of numbers is reserved for specific customer applications.
This range is primarily for debugging new programs.

40000000 - SfI1l1lJ transient

The third group is reserved for applications that generate program numbers
dynamically.

(1) (C) Copyright 1986, 1987, 1988 Sun Microsystems, Inc.

RPe Programming Guide 3 -11

60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

The final groups are reserved for future use and should not be used.

To register a protocol specification, send a request to the following location.
Please include a complete protocol specification, similar to those in this
manual. In return, you will receive a unique program number.

Network Administration Office, Dept. NET
Information Networks Division
19420 Homestead Road
Cupertino, California 95014
408-447 -3444

3-12 Intermediate RPC Layer

Pass Arbitrary Data Types
RPC can handle arbitrary data structures, regardless of different nodes' byte

orders or structure layout conventions. RPC handles these structures by
converting them to a network standard form called XDR (eXternal Data
Representation) before sending them over the network. The process of
converting from a particular node representation to XDR format is
serializing, and the reverse process is deserializing. The type field parameters
of callrpc() and registerrpc() can be a built-in procedure (like xdr _u_Iong() in
the previous example) or a user supplied one. XDR has the following built-in
type routines.

• xdr_bool() • xdr _ opaque ()

• xdr _char() • xdr _ double()

• xdr _short() • xdr_u_char()

• xdr _enum() • xdr _u_int()

• xdr Jloat() • xdr_u_long()

• xdr_int() • xdr _ u _short ()

• xdr _long() • xdr_void()

RPC Programming Guide 3 -13

EXAMPLE: User -defined type routine

1. Send the following structure.

struct simple {
int a;
short b;

} simple;

2. Call callrpc() as follows.

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_simple, &simple ...);

3. Write xdr _simp/e() as follows.

#include <rpc/rpc.h>

xdr_simple(xdrsp, simplep)
XDR *xdrsp;

{

}

struct simple *simplep;

if (!xdr_int(xdrsp, &simplep->a))
return (0);

if (!xdr_short(xdrsp, &simplep->b))
return (0);

return (1);

An XDR routine returns nonzero (true for C) if it completes successfully or
zero (false) if it does not. (Refer to the "XDR Protocol Specification" chapter
for more XDR implementation examples.)

3 -14 Intermediate RPe Layer

In addition to the built-in primitives, there are the following prefabricated
building blocks.

• xdr _ array() • xdr _string()

• xdr _bytes() • xdr_union()

• xdr yointer() • xdr Jeferenee()

• xdr _veetor() • xdrJree()

EXAMPLE:

1. To send a variable array of integers, you might package them as a
structure.

struct varintarr {
int *data;
int arrlnth;

} arr;

2. Make an RPC call.

callrpc(hostname. PROGNUM. VERSNUM. PROCNUM.
xdr_varintarr.&arr ... };

3. Define the xdr _varintarr().

xdr_varintarr(xdrsp. arrp}
XDR *xdrsp;
struct varintarr *arrp;

{
xdr_array(xdrsp. &arrp->data. &arrp->arrlnth. MAXLEN.

sizeof(int}. xdr_int};
}

RPC Programming Guide 3 -15

The previous xdr _ array() routine takes as parameters the

• XDRhandle

• a pointer to the array

• a pointer to the size of the array

• the maximum allowable array size

• the size of each array element

• an XDR routine for handling each array element.

EXAMPLE: If both the client and server know the array size in advance,
you could use the following function to send out an array of
length SIZE.

int intarr[SIZE];

xdr_intarr(xdrsp, intarr)
XDR *xdrsp;

{

}

int intarr[];

i nt i;

for (i = 0; i < SIZE; i++) {

}

if (Ixdr_int(xdrsp,&intarr[i]))
return (0);

return (1);

XDR always converts objects such that their lengths are each a multiple of
4-bytes. Thus, if either of the examples above involved characters instead of
integers, each character would occupy 32 bits. The XDR routine xdr _bytes() is
likexdr_aITay() except that it packs characters; xdr_bytes() has four
parameters, similar to the first four parameters of xdr _aITay(). For
null-terminated strings, the xdr _string() routine is the same as xdr _bytes()
without the length parameter. When serializing, it obtains the string length
using strlen(); when deserializing, it creates a null-terminated string.

3 - 16 Intermediate RPe Layer

EXAMPLE: Call the previously written xdr _simple() and the
built-in functions xdr _string() and xdr Jeference().
The xdr Jeference() function dereferences pointers.

struct finalexample {
char *string;
struct simple *simplep;
} finalexample;

xdr_finalexample(xdrsp,finalp}
XDR *xdrsp;

{

}

struct finalexample *finalp;

if (Ixdr string(xdrsp, &finalp->string, MAXSTRLEN)}
return (O);

if (Ixdr_reference(xdrsp, &finalp->simplep,
sizeof(struct simple), xdr_simple}};
return (O);

return (I);

RPe Programming Guide 3 -17

Lowest RPe Layer
In the previous examples RPC automatically takes care of many details for
you. Refer to this section to change the defaults by using the RPC library
lowest layer. You should be familiar with sockets and system calls before
attempting to use them.

You may have several occasions to use RPC lower layers.

• You may need to use TCP. The higher layers use UDP, which restricts RPC
calls to 8K bytes of data. Using TCP permits calls to send longer streams of
data. (See the "Additional RPC Examples, TCP" section.)

• You may want to allocate and free memory while serializing or deserializing
with XDR routines. The higher layer does not contain a call to let you free
memory explicitly. (See the "Memory Allocation with XDR" section.)

• You may need to perform authentication on either the client or server side
by supplying credentials or verifying them. (See the "Additional RPC
Features, Authentication" section.)

3 - 18 Lowest RPe Layer

RPC Server Side
The server for the nusers program shown below performs the same function

as the one using registenpc(), except it uses a lower RPC layer.

#inc1ude <stdio.h>
#inc1ude <rpc/rpc.h>
#inc1ude <rpcsvc/rusers.h>

main(
{

}

SVCXPRT *transp;
i nt nuser();

transp = svcudp_create(RPC_ANYSOCK);
if (transp == NULL){

}

fprintf(stderr, "cannot create an RPC server\n");
exit(1) ;

pmap_unset(RUSERSPROG, RUSERSVERS);
if (!svc_register(transp, RUSERSPROG, RUSERSVERS,

nuser, IPPROTO UDP» {
fprintf(stderr, "cann~t register RUSERS service\n");
exit(1) ;

}
svc run(); /* never returns */
fprTntf(stderr, "should never reach this point\n");

nuser(rqstp, transp)

{

struct svc_req *rqstp;
SVCXPRT *transp;

unsigned long nusers;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendrep1y(transp, xdr_void, 0» {
fprintf(stderr, "cannot reply to RPC ca1l\n");
exit(1) ;

}
return;

case RUSERSPROC_NUM:
/*
* code here to compute the number of users
* and put in variable nusers
*/

if (!svc_sendreply(transp, xdr_u_10ng, &nusers) {
fprintf(stderr, "cannot reply to RPC ce1l\n");
exit(1) ;

}
return;

RPC Programming Guide 3-19

}

defau It:
svcerr_noproc(transp);
return;

}

First, the selVer receives a transport handle for sending RPC messages. The
registerrpc() function uses svcudp _create () to obtain a UDP handle. If you
require a reliable protocol, call svctcp_create() instead. If the argument to
svcudp_create() is RPC_ANYSOCK, the RPC library creates a socket on
which to send RPC calls. Otherwise, svcudp_create() expects its argument to
be a valid socket number. If specifying your own socket, it can be bound or
unbound. If it is bound, the port numbers of svcudp_create() and
clntudp _create () (the low-level client routine) must match.

When you specify RPC _ANYSOCK for a socket or give an unbound socket,
the system determines port numbers in the following way.

• The selVer selects a port number for the RPC procedure if the socket
specified to svcudp _create () is not already bound.

• When a selVer starts, it registers that port number with the portmapper
daemon on its local node.

• When the clntudp _create () call is made with an unbound socket, the system
queries the portmapper on the node to which the call is being made and
obtains the appropriate port number.

• The RPC call fails if the portmapper is not running or has no port
corresponding to the RPC call.

You can make RPC calls directly to the portmapper using the appropriate
procedure numbers defined in the include file <rpc/pmap yrot.h >.

After creating a selVice transport, call pmap _ unset() so if the nusers server
crashed earlier, any previous trace of it is erased before restarting. The
pmap_unset() call erases the entry for RUSERSPROG from the portmapper's
tables.

Associate the program number for nusers with the procedure nuser(). The
final argument to svc Jegister() is the protocol being used; in this case, it is
IPPROTO _ UDP. Notice that unlike registerrpc(), no XDR routines are
involved in the registration process. The registration occurs on the program,
rather than procedure level.

3 - 20 Lowest RPC Layer

The user routine nuser() must call and dispatch the appropriate XDR
routines based on the procedure number. Note, nuser() handles two items
that registenpc() handles automatically.

• First, the procedure NULLPROC (currently zero) returns with no
arguments. You can use NULLPROC as a simple test for detecting if a
remote program is running.

• Second, a check occurs for invalid procedure numbers; if one is detected,
svcen-_ noproc () is called to handle the error.

The user service routine serializes the results and returns them to the RPC
caller via svc _sendreply(). Its first parameter is the service transport handle,
the second is the XDR routine, and the third is a pointer to the data to be
returned.

A server can handle an RPC program that passes data.

RPC Programming Guide 3 - 21

EXAMPLE: This example adds a procedure RUSERSPROC _BOOL that
has an argument nusers. The procedure returns TRUE or
FALSE depending on whether nusers users are logged on to
the node.

case RUSERSPROC_BOOL: {
int bool;

}

unsigned long nuserquery;

if (!svc_getargs(transp, xdr_u_long, &nuserquery» {
svcerr_decode(transp);
return;

}
/*
* code to set nusers = number of users
*/

if (nuserquery == nusers)
bool = TRUE;

else
bool = FALSE;

if (!svc_sendreply(transp, xdr_bool, &bool){
fprintf(stderr, "cannot reply to RPC call\n");
exit(1) ;

}
return;

The relevant routine is svc .$etargs(), which takes the following arguments: a
service transport handle, the XDR routine, and a pointer to where the input is
to be placed.

Memory Allocation with XDR
XDR routines not only perform input and output, they may also perform

memory allocation. For this reason the second parameter of xdr _ array() is a
pointer to an array, rather than the actual array. If it is NULL when
deserializing, xdr _ array() allocates space for the array and returns a pointer to
it, putting the size of the array in the third argument.

EXAMPLE: The following XDR routine xdr _chararrl () has a fIXed array
of bytes with length SIZE.

xdr_chararrl(xdrsp, chararr)
XDR *xdrsp;
char chararr[];

3-22 Lowest RPe Layer

{

}

char *p;
int len;

p = chararr;
len = SIZE;
return (xdr_bytes(xdrsp, &p, &len, SIZE));

The routine may be called from a server as follows.

char chararr[SIZE];

svc_getargs(transp, xdr_chararrl, chararr);

The chara" has already allocated space. If you want XDR to do the
allocation, you would have to rewrite this routine in the following way.

xdr_chararr2(xdrsp, chararrp)
XDR *xdrsp;
char **chararrp;
{

int len;

len = SIZE;
return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));

}

Then the RPC call might look as follows.

char *arrptr;
arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);
/*
* use the result here
*/

svc_freeargs(transp, xdr_chararr2, &arrptr);

After using the character array, it can be freed with svcJreeargs(). In the
routinexdr Jinalexample() given earlier, ifjinalp->string was NULL in the call

svc_getargs(transp, xdr_finalexample, &finalp);

then,

svc_freeargs(xdrsp, xdr_finalexample, &finalp);

RPe Programming Guide 3-23

frees the array allocated to hold [malp- >string; otherwise, it frees nothing. The
same is true for finalp- >simplep.

Each XDR routine is responsible for serializing, deserializing, and allocating
memory.

• When an XDR routine is called from callrpc(), the serializer part is used.

• When an XDR routine is called from svc ..Eetargs(), the deserializer is used.

• When an XD R routine is called from svc Jreeargs () the memory
deallocator is used.

When building simple programs like the examples in this section, you do not
have to worry about the three modes. Refer to the "XDR Protocol
Specification" chapter for examples of more sophisticated XDR routines that
determine which of the three modes to use.

3 - 24 Lowest RPe Layer

RPC Calling Side
When using callrpc() you have no control over the RPC delivery mechanism
or the socket used to transport the data. To illustrate the RPC layer that lets
you adjust these parameters, consider the following code that calls the nusers
service.

EXAMPLE:

#include
#include
#include
#include
'include
#include

<stdio.h>
<rpc/rpc.h>
<rpcsvc/rusers.h>

<sys/socket.h>
<time.h>

<netdb.h>

main(argc, argyl
int argc;

{
char *argv[];

struct hostent *hp;
struct timeval pertry timeout, total timeout;
struct sockaddr_in server_addr; -
int sock = RPC ANYSOCK;
register CLIENT *client;
enum clnt stat clnt stat;
unsigned long nusers;

if (argc < 2) {
fprintf(stderr, "usage: nusers hostname\n");
exit(1) ;

}
if ((hp = gethostbyname(argv[l]» == NULL) {

fprintf(stderr, "cannot get addr for %s\n",argv[l]);
exit(1) ;

}
pertry_timeout.tv_sec = 3;
pertry_timeout.tv_usec = 0;
memcpy((caddr_t)&server->addr.sin_addr, hp->h_addr, hp->h_length);
server addr.sin family = AF INET;
server=addr.sin=port = 0;-
if ((client = clntudp_create(&server_addr, RUSERSPROG,

RUSERSVERS, pertry_timeout, &sock}) == NULL) {
clnt_pcreateerror("clntudp_create");
exit(1) ;

}
total_timeout.tv_sec = 20;
total timeout.tv usec = 0;
clnt stat = clnt-call(client, RUSERSPROC NUM, xdr void,

- 0, xdr u long, &nusers, total timeout); -
if (clnt_stat-!: RPC_SUCCESS) { -

RPe Programming Guide 3 - 25

}

clnt_perror(client, "rpc");
exit(1);

clnt_destroy(client);
}

The low-level version of callrpc() is clnt_call(); it takes a CLIENT pointer
rather than a host name. The parameters to clnt_call() are

• the CLIENT pointer,

• the procedure number,

• the XDR routine for serializing the argument,

• a pointer to the argument,

• the XDR routine for deserializing the return value,

• a pointer to where the return value will be placed, and

• the length of time to wait for a reply.

The CLIENT pointer is encoded with the transport mechanism. The callrpc()
routine uses UDP and thus, calls clntudp_create() to obtain a CLIENT
pointer. To use TCP, call clnttcp _create () instead.

The parameters to clntudp _ create() are

• the server address,

• the program number,

• the version number,

• a timeout value (between tries), and

• a pointer to a file descriptor for a socket.

The final argument to clnt_call() is the total time to wait for a response. The
number of tries is the clnt _call() timeout divided by the clntudp _create ()
timeout rounded down to the nearest integer.

Note, the clnt_destroy() call deallocates any space associated with the
CLIENT handle. It does not close the associated socket that was passed as an
argument to clntudp _create (). The reason is that if there are multiple client
handles using the same socket, then you can close one handle without
destroying the socket that other handles are using.

3 - 26 Lowest RPe Layer

To make a stream connection, replace the call to clntudp _create () with a call
to c[nttcp _create ().

clnttcp_create (&server_addr,prognum, versnum &socket,inputsize,
outputsize);

No timeout argument exists; instead, you must specify the receive and send
buffer sizes. When the clnttcp_create() call is made, a TCP connection is
established. All RPC calls using that CLIENT handle would use this
connection. The server side of an RPC call using TCP has svcudp _create ()
replaced by svctcp _create ().

RPC Programming Guide 3 - 27

Additional RPC Features
This section contains other RPC features you may occasionally find useful.

Select on the Server Side
Suppose a process is processing RPC requests while performing some other

activity. If the other activity includes periodically updating a data structure, the
process can set an alarm signal before calling svc_run(). However, if the other
activity involves waiting on a file descriptor, the svc_run() call will not work.
The code for svc JUn () is as follows.

void
svc rune)
{ -

}

int readfds;

for (;;) {

}

readfds = svc fds;
switch (select(32, &readfds, NULL, NULL, NULL)) {

case -1:

case 0:

if (errno == EINTR)
continue;

perror("svc_run: select");
return;

break;
defau It:

svc_getreq(readfds);
}

You can bypass svc _run () and call svc ..Eetreq (). You only need to know the
file descriptors of the socket associated with the programs on which you are
waiting. Thus, you can have your own select() waiting on both the RPC socket
and your own descriptors.

Broadcast RPC
The portmapper is a daemon that converts RPC program numbers in to "P
protocol port numbers. (See portmap(lM).) You cannot perform broa' .~ast
RPC without the portmapper in conjunction with standard RPC pre .0cols.

3-28 Additional RPC Features

Refer to the following list of differences between broadcast RPC and normal
RPC calls.

• Normal RPC expects one answer, whereas broadcast RPC expects many
answers (one or more answers from each responding node).

• Only packet-oriented (connectionless) transport protocols (like UDP/lP)
can support broadcast RPC.

• The broadcast RPC implementation ignores all unsuccessful responses.
Thus, if a version mismatch occurs between the broadcaster and a remote
service, the user of broadcast RPC never knows.

• Broadcast RPC sends all messages to the portmap port. Thus, only services
that register with their portmapper are accessible via the broadcast RPC
mechanism.

RPe Programming Guide 3 - 29

Broadcast RPC Synopsis

#include <rpc/rpc.h>

enum clnt stat
clnt_broadcast(prog, vers, proc, xargs, argsp, xresults,

resultsp, eachresult)
u_long prog;
u_long vers;
u_long proc;
xdrproc_t xargs;
caddr_t argsp;
xdrproc_t xresults;
caddr_t resultsp;
bool_t (*eachresult)();

/* program number */
/* version number */
/* procedure number */
/* xdr routine for args */
/* pointer to args */
/* xdr routine for results */
/* pointer to results */
/* call with each result gotten */

The eachresult() function is called each time a valid result is obtained. It
returns a boolean indicating whether the client wants more responses.

boo 1 t
each;esult(resultsp, raddr)
caddr_t resultsp;
struct sockaddr_in *raddr;

/* location of results */
/* IP addr of responding machine */

If eachresult() returns TRUE, broadcasting stops and clnt _broadcast() returns
successfully. Otherwise, the routine waits for another response. The request is
rebroadcast after a few seconds of waiting. If no responses come back, the
routine returns with RPC _ TIMEDOUT. To interpret clnt _stat errors, call
clnt yerrno() with the error code.

3-30 Additional RPe Features

Batching
In the RPC architecture, clients send a call message and wait for servers to
reply that the call succeeded. This procedure implies that clients do not
compute while servers are processing a call. It is inefficient if the client does
not want or need an acknowledgement for every message sent. Using RPC
batch facilities, clients can continue computing while waiting for a response.

Batching is the process of placing RPC messages in a pipeline of calls to a
desired server. Batching assumes the following items.

• Each RPC call in the pipeline requires no response from the server, and the
server does not send a response message.

• The pipeline of calls is transported on a reliable byte stream transport (i.e.,
TCP/lP).

Since the server does not respond to every call, the client can generate new
calls in parallel with the server executing previous calls. The TCP/IP
implementation can buffer many call messages and send them to the server in
one write() system call. This overlapped execution greatly decreases the
interprocess communication overhead of the client and server processes and
therefore, decreases the total elapsed time of a series of calls.

Note Since the batched calls are buffered, the client should
eventually make a non-batched call to flush the pipeline.

RPC Programming Guide 3 - 31

EXAMPLE: Assume a string rendering service (like a window system)
has two similar calls: one renders a string and returns void
results, while the other renders a string and remains silent.
The service using the TCP/IP transport may look like this
example.

'include <stdio.h>
'include <rpc/rpc.h>
'include "windows.h" /* contains the values of WINDOWPROG

* and WINDOWVERS
*/

void windowdispatch();

maine
{

}

void

SVCXPRT *transp;

transp = svctcp_create(RPC_ANYSOCK, 0, 0);
if (transp == NULL){

}

fprintf(stderr, "cannot create an RPC server\n");
exit(1) ;

pmap_unset(WINDOWPROG, WINDOWVERS);
if (!svc register(transp, WINDOWPROG, WINDOWVERS,

w1ndowdispatch, IPPROTO_TCP» {

}

fprintf(stderr, "cannot register WINDOW service\n");
exit(1) ;

svc run(); /* never returns */
fpr1ntf(stderr, "should never reach this pOint\n");

windowdispatch(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
char *s = NULL;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0» {
fprintf(stderr, "cannot reply to RPC call\n");
exit(1) ;

}
return;

case RENDERSTRING:
if (!svc_getargs(transp, xdr_wrapstring, &s» {

fprintf(stderr, "cannot decode arguments\n");
/*

3 - 32 Additional RPe Features

}

}
/*

* tell caller that a problem exists
*/

svcerr_decode(transp);
break;

* call here to render the string s
*/

if (Isvc_sendreply(transp, xdr_void, NULL» {
fprintf(stderr, "cannot reply to RPC call\n");
exit(1) ;

}
break;

case RENDERSTRING BATCHED:

}

if (!svc_getargs(transp, xdr_wrapstring, &s» {
fprintf(stderr, "cannot decode arguments\n");
/*
* the server cannot return errors to the client
* when using batched RPC
*/

break;

/*
* call here to render string s, but send no reply!
*/

break;
defau It:

svcerr_noproc(transp);
return;

}
/*
* now free string allocated while decoding arguments
*/

svc_freeargs(transp, xdr_wrapstring, &s);

The service could have one procedure that takes the string and a boolean to
indicate whether the procedure should respond. For a client to take advantage
of batching, the client must perform RPC calls on a TCP-based transport and
the actual calls must have the following attributes.

• The result's XDR routine must be zero.

• The RPC call's timeout must be zero.

RPC Programming Guide 3 - 33

EXAMPLE: This is an example of a client using hatching to render
strings; the hatching is flushed when the client receives a
null string.

'include <stdio.h>
'include <rpc/rpc.h>
'include <sys/socket.h>
'include <time.h>
'include <netdb.h>
'include "windows.h"

main(argc, argv)
int argc;

{
char *argv [] ;

struct hostent *hp;
struct timeval total timeout;
struct sockaddr_in s;rver_addr;
int sock = RPC ANYSOCK;
register CLIENT *client;
enum clnt stat clnt stat;
char buf[BUFSIZ], *8 = buf;

if (argc < 2) {

}

fprintf(stderr, "usage: nusers hostname\n");
exit(1) ;

if ((hp = gethostbyname(argv[l])) == NULL) {
fprintf(stderr, "cannot get addr for %s\n",argv[l]);
exit(1) ;

}

memcpy((caddr_t)&server->addr.sin_addr, hp->h_addr, hp->h_lengt
server addr.sin family = AF INET;
server=addr.sin=port = 0;-

if ((client = clnttcp_create(&server_addr,

}

WINDOWPROG, WINDOWVERS, &sock, 0, 0)) == NULL) {
clnt_pcreateerror("elnttep_ereate");
exit(1) ;

total_timeout.tv_sec = 0;
total timeout.tv usee = 0;
while-(scanf("%s", s) != EOF) {

clnt stat = clnt eall(elient, RENDERSTRING BATCHED,
- xdr_wrapstring, &s, NULL, NULL, total_timeout);

if (elnt_stat !~ RPC_SUCCESS) {
clnt_perror(client, "batched rpc");
exit(1) ;

}

3 - 34 Additional RPC Features

}

}
/* now flush the pipeline
*/

total timeout.tv sec = 20;
clnt stat = clnt-call(client. NULLPROC. xdr_void. NULL,

- xdr vOid.-NULL. total timeout);
if (clnt stat != RPC SUCCESS) {

c1nt_perror(c1ient. "rpc");
exit(1) ;

}
clnt_destroy(client);

Since the server sends no message, the clients cannot be notified of any
failures that may occur.

RPC Programming Guide 3 - 35

Authentication
In the previous examples the caller never identified itself to the server, and
the server never required an ID from the caller. Some network services, such
as a network file system, require stronger security than what has been
presented thus far.

The RPC package on the server authenticates every RPC call, and similarly,
the RPC client package generates and sends authentication parameters. Just
as different transports (TCP/IP or UDP/lP) can be used when creating RPC
clients and servers, different forms of authentication can be associated with
RPC clients; the authentication type used as a default is type A UTH _NULL.

The authentication subsystem of the RPC package is open ended; numerous
types of authentication are easy to support. However, this section deals only
with UNIX type authentication which is the only supported type except
AUTH NULL.

RPC Client Side
When a caller creates a new RPC client handle as in

clnt = clntudp_create(address, prognum, versnum, wait, sockp);

the appropriate transport instance defaults the associate authentication handle
to be as follows.

clnt->cl_auth = authnone_create();

The RPC client can choose to use UNIX2 style authentication by setting
clnt- >cl_ auth after creating the RPC client handle.

clnt->cl_auth = authunix_create_default();

This authentication causes each RPC call associated with clnt to carry the
following authentication credentials structure.

3 - 36 Additional RPe Features

/*
* Unix style credentials.
*/

struct authunix_parms {
u_long aup_time;
char *aup_machname;
int aup_uid;
int aup_gid;
u_int aup_len;
int *aup_gids;

}

/* credentials creation time */
/* host name where client is */
/* client's effective UID */
/* client's effective GID */
/* element length of aup_gids */
/* array of groups to which the user belongs */

These fields are set by authunix _create _ default() by invoking the appropriate
system calls. Since the RPC user created this new style of authentication, the
user is responsible for destroying it to conserve memory.

auth_destroy(clnt->cl_auth);

RPC Server Side
Service implementors have a harder time handling authentication issues since
the RPC package passes the service dispatch routine a request with an
associated arbitrary authentication style. Consider the fields of a request
handle passed to a service dispatch routine.

/*
* An RPC Service request
*/

struct svc_req {
u_long rq_prog; /* service program number */
u_long rq_vers; /* service protocol vers num */
u_long rq_proc; /* desired procedure number */
struct opaque_auth rq_cred; /* raw credential from network */
caddr_t rq_clntcred; /* credentials (read only) */

} ;

The rq_cred is mostly opaque, except for one field of interest:
the style of authentication credentials.

/*
* Authentication info. Mostly opaque to the programmer.
*/

struct opaque_auth {
enum_t oa_flavor;
caddr t oa base;
u_int-oa_length;

} ;

/* style of credentials */
/* address of more auth stuff */
/* not to exceed MAX_AUTH_BYTES */

RPe Programming Guide 3-37

The RPC package guarantees the following two items to the service dispatch
routine.

• The request's rq_cred is well formed. Thus, the service implementor may
inspect the request's rq_ cred.oa Jlavor to determine which style of
authentication the caller used. The service implementor may also inspect
the other fields of rq_cred if the style is not supported by the RPC package.

• The request's rq_clntcred field is either NULL or points to a well formed
structure corresponding to supported authentication credentials. Only
UNIX2 rq_clntcred could be cast to a pointer to an authunixyarms
structure. If rq_clntcred is NULL, the server may wish to inspect the other
(opaque) fields of rq_ cred if it knows about a new type of authentication
about which the RPC package does not know.

Note The RPC protocol allows you to specify your own form of
authentication, but to do so you must have access to the
RPC authentication source files. Implementations based on
NFS 3.2 (including HP-UX 6.5 on the Series 300 and 7.0 on
the Series 800) do not allow you to define your own form of
authentication.

3 - 38 Additional RPe Features

EXAMPLE: This example extends the remote users service example so
that it computes results for all users except UID 16.

nuser(rqstp, transp)

{

struct svc_req *rqstp;
SVCXPRT *transp;

struct authunix_parms *unix_cred;
int uid;
unsigned long nusers;

/*
* we do not care about authentication for null proc
*/

if (rqstp->rq_proc == NUllPROC) {

}

if (!svc_sendreply(transp, xdr_void. 0)) {
fprintf(stderr, "cannot reply to RPC call\n");
exit(1) ;

}
return;

/*
* now get the uid
*/

switch (rqstp->rq_cred.oa_flavor) {
case AUTH UNIX:

unix_cred = (struct authunix_parms *)rqstp->rq_clntcred;
uid = unix_cred->aup_uid;
break;

case AUTH_NULl:
defau 1t:

svcerr_weakauth(transp);
return;

}
switch (rqstp->rq_proc) {
case RUSERSPROC NUM:

/* -
* make sure caller is allowed to call this proc
* this disallows uid 16 to use this service
*/
if (uid == 16) {

svcerr_systemerr(transp);
return;

}
/*
* code here to compute the number of users
* and put in variable nusers
*/

if (!svc_sendreply(transp, xdr_u_long, &nusers)) {
fprintf(stderr, "cannot reply to RPC call\n");
exit(1) ;

RPC Programming Guide 3-39

}

}
return;

defau It:
svcerr_noproc(transp);
return;

}

Note, it is customary not to check the authentication parameters associated
with the NULLPROC (procedure number zero).

If the authentication parameter's type is not suitable for your service, you
should call svcen-_ weakauth ().

The service protocol should return status for access denied; in the above
example, the protocol does not have such a status, so the service primitive
svcen" _ systemen-() is called instead. This point underscores the relation
between the RPC authentication package and the services; RPC deals only
with authentication and not with individual services' access control. The
services must implement their own access control policies and reflect these
policies as return statuses in their protocols.

Using inetd
An RPC server can start from inetd(lM). The only difference from the usual
code is that svcudp _create () should be called as

transp = svcudp_create(O);

since inetd(lM) passes a socket as file descriptor zero (0). You should call
svc Jegister() as

svc_register(transp, PROGNUM, VERSNUM, service, 0);

with the final parameter set to zero (0), since the program would already be
registered by inetd(lM). If you want to exit from the server process and return
control to inetd(lM), you must explicitly exit since svc_run() never returns.

To use TCP based RPC from the inetd(lM) daemon, call svcfd_create()
instead of svctcp _create () since the socket (file descriptor zero (0» is
already an active socket.

The entry formats in /etc/inetd.conf for RPC services are as follows.

3-40 Additional RPe Features

UDP:

rpc dgram udp wait user server program version name

TCP:

rpc stream tcp nowait user server program version name

user The user name that the process executes as

server The selVer program

program Program number of the service

version Version number of the selVice

name The selVer name and optional arguments

EXAMPLES:

rpc dgram udp wait root /usr/etc/rpc.mountd 100005 1 rpc.mountd

If the same program handles multiple versions, the version number can be a
range as in the following line.

rpc dgram udp wait root /usr/etc/rpc.rstatd 100001 1-3 rpc.rstatd

RPe Programming Guide 3 - 41

Additional RPe Examples

Versions
By convention, the first version number of program PROG is
PROGVERS _ ORIG, and the most recent version is PROGVERS. Suppose
there is a new version of the user program that returns an unsigned short
rather than a long. If the name of this version is RUSERSVERS _SHORT, a
server that wants to support both versions would perform a double register.

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,
nuser, IPPROTO UDP» {

fprintf(stderr, "cann~t register RUSER service\n");
exit(1);

}
if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,

nuser, IPPROTO UDP» {
fprintf(stderr, "cann~t register RUSER service\n");
exit(1) ;

}

3-42 Additional RPe Examples

The same C procedure can handle both programs.

nuser(rqstp, transp)

{

}

struct svc_req *rqstp;
SVCXPRT *transp;

unsigned long nusers;
unsigned short nusers2;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendrep1y(transp, xdr_void, O}) {
fprintf(stderr, "cannot reply to RPC ca1l\n");
exit(1) ;

}
return;

case RUSERSPROC NUM:
/* -
* code here to compute the number of users
* and put in variable nusers and in nusers2
*/

if (rqstp->rq-vers == RUSERSVERS_ORIG) {
if (!svc_sendreply(transp,xdr_u_long, &nusers» {

fprintf(stderr, "cannot reply to RPC call \n");
exit(1) ;

}
} else if (Isvc_sendreply (transp,xdr_u_short,&nusers2» {

fprintf (stderr, "cannot reply to RPC call \n");
exit(1) ;

}
return;

defau It:
svcerr_noproc(transp);
return;

}

RPC Programming Guide 3 - 43

TCP
The following example is a routine to perform a remote copy. The initiator of
the RPC call takes its standard input and sends it to the server to print it on
standard output. The RPC call uses TCP. This example also illustrates an
XDR procedure that behaves differently on serialization than on
deserialization.

EXAMPLE:

/*
* The xdr routine:
* on decode, read from network, write onto fp
* on encode, read from fp, write onto network
*/

'include <stdio.h>
'include <rpc/rpc.h>

xdr_rcp(xdrs, fp)
XDR *xdrs;
FILE *fp;

{

}

unsigned long size;
char buf[BUFSIZ], *p;

if (xdrs->x_op == XDR_FREE) /* nothing to free */
return 1;

whi le (1) {

}

if (xdrs->x_op == XDR_ENCODE) {

}

if «size = fread(buf, sizeof(char), BUFSIZ,
fp)) == 0 && ferror(fp)) {

fprintf(stderr, "cannot fread\n");
exit(1) ;

p buf;
if (!xdr bytes(xdrs, &p, &size, BUFSIZ))

return (0)
if (s i z e == 0)

return (1)
if (xdrs->x_op == XDR_DECODE) {

}

if (fwrite(buf, sizeof(char), size,
fp) != size) {

}
}

fprintf(stderr, "cannot fwrite\n");
exit(1) ;

3 - 44 Additional RPe Examples

/*
* The sender routines (client)
*/

#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <time.h>

i nt xdr _rcp (), ca 11 rpctcp ();

main(argc, argyl

{

}

int argc;
char *argv [] ;

int err;

if (argc < 2) {

}

fprintf(stderr, "usage: %s servername\n", argv[O]);
exit(1) ;

if « err = ca 11 rpctcp (a rgv [1], RCPPROG, RCPPROC_FP,

}

RCPVERS, xdr_rcp, stdin, xdr_void, 0) != 0)) {
clnt perrno(err);
fpri~tf(stderr, "cannot make RPC call\n");
exit(1) ;

callrpctcp(host, prognum, procnum, versnum, inproc, in, outproc, out)
char *host, *in, *out;

{

int prognum, procnum, versnum;
xdrproc_t inproc, outproc;

struct sockaddr_in server_addr;
int socket = RPC_ANYSOCK;
enum clnt stat clnt stat;
struct hostent *hp;-
register CLIENT *client;
struct timeval total_timeout;

if «hp = gethostbyname(host)) == NULL) {

}

fprintf(stderr, "cannot get addr for '%s'\n", host);
exit(1) ;

memcpy«caddr_t)&server->addr.sin_addr, hp->h_addr, hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = 0;
if «client = clnttcp_create(&server_addr, prognum,

versnum, &socket, BUFSIZ, BUFSIZ)) NULL) {
clnt_pcreateerror("rpctcp_create");
exit(1) ;

}

RPC Programming Guide 3 - 45

}

/*

total timeout.tv sec = 20;
total-timeout.tv-usee = 0;
clnt_stat = clnt=call(elient, procnum,

inproc, in, outproe, out, total_timeout);
elnt_destroy(elient);
return (int)clnt_stat;

* The receiving routines (server)
*/

#include <stdio.h>
#include <rpc/rpc.h>

maine
{

}

register SVCXPRT *transp;

if «transp = svctcp_create(RPC_ANYSOCK, BUFSIZ, BUFSIZ» NU
fprintf(stderr, "svctcp_create: error\n");
exit{l);

}
pmap_unset(RCPPROG, RCPVERS);
if (!sve_register{transp,

}

RCPPROG, RCPVERS, rep_service, IPPROTO_TCP» {
fprintf(stderr, "svc_register: error\n");
exit(1) ;

sve run{); /* never returns */
fpr~ntf{stderr, "svc_run should never return\n");

rcp_service(rqstp, transp)

{

register struet svc_req *rqstp;
register SVCXPRT *transp;

switch (rqstp->rq_proe) {
case NULLPROC:

if (svc_sendreply(transp, xdr_void, 0) == 0) {
fprintf(stderr, "err: rep_service\n");
exit(1) ;

}
return;

case RCPPROC FP:
if (!s;c_getargs(transp, xdr_rcp, stdout» {

svcerr_decode(transp);
return;

}
if (!svc_sendreply(transp, xdr_void, 0» {

fprintf(stderr, "cannot send reply\n");
return;

}
exit(O) ;

3-46 Additional RPe Examples

}

defau It:
svcerr_noproc(transp);
return;

}

Callback Procedures
You may want a server to become a client and make an RPC call back to the
process which is its client. One example is remote debugging where the client
is a window system program and the server is a debugger running on the
remote node. Usually the user clicks a mouse button at the debugging window
to select a debugger command. The application then makes an RPC call to
the selVer (where the debugger is actually running), telling it to execute that
command. However, when the debugger reaches a breakpoint, the roles
reverse and the debugger makes an RPC call to the window program to
inform the user that a breakpoint was reached.

To perform an RPC callback, you need a program number on which to make
the RPC call. Since this program number is dynamically generated, it should
be in the transient range, Ox40000000 - OxSft1l11T. The routine gettransient()
returns a valid program number in the transient range and registers it with the
port mapper. It only talks to the portmapper running on the same node as the
gettransient() routine. The call to pmap _set () is a test and set operation in
that it indivisibly tests whether a program number was already registered. If it
was not, then the pmap _set call reserves it. On return, the sockp argument
contains a socket that can be used as the argument to an svcudp _create () or
svctcp _create () call

RPe Programming Guide 3-47

EXAMPLE:

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/socket.h>

u_long
gettransient(proto, vers, sockp)

int proto;

{

}

u long vers;
int *sockp;

static u_long prognum = Ox40000000;
int s, len, socktype;
struct sockaddr_in addr;

switch(proto) {

}

case IPPROTO UDP:
socktype = SOCK_DGRAM;
break;

case IPPROTO_TCP:
socktype = SOCK_STREAM;
break;

defau It:
fprintf(stderr, "unknown protocol type\n");
return 0;

if (*sockp == RPC ANYSOCK) {
if ((s = socket(AF INET, socktype, 0)) < 0) {

perror("socket") ;
return (0);

}
*sockp = s;

} else
s = *sockp;

addr.sin_addr.s_addr = 0;
addr.sin family = AF INET;
addr.sin=port = 0; -
len = sizeof(addr);
/*
* may be already bound, so do not check for error
*/

(void) bind(s, &addr, len);
if (getsockname(s, &addr, &len)< 0) {

perror("getsockname");
return (0);

}
while (!pmap_set(prognum++, vers, proto, addr.sin_port))

continue;
return (prognum-l);

3 - 48 Additional RPe Examples

The following pair of programs illustrate how to use the gettransient() routine.

• The client makes an RPC call to the server, passing it a transient program
number.

• The client then waits to receive a callback from the server at that program
number.

• The server registers the program EXAMPLEPROG so it can receive the
RPC call informing it of the callback program number.

• Mter receiving a SIGALRM signal, the server sends a callback RPC call
using the program number it received earlier.

RPe Programming Guide 3-49

EXAMPLE:

/*
* client
*/

'include <stdio.h>
'include <rpc/rpc.h>
'include "example.h"

int callback();
u long gettransient(), x;
char hostname[256];

main(argc, argyl
int argc;

{

}

char *argv [] ;

int ans, s;
SVCXPRT *xprt;

gethostname(hostname. sizeof(hostname));
s = RPC ANYSOCK;
x = gettransient(IPPROTO UDP, I, &s);
fprintf(stderr, "client gets prognum %ld\n", x);
if «xprt = svcudp_create(s)) == NULL) {

}

fprintf(stderr, "rpc_server: svcudp_create\n");
exit(l);

/* protocol is a - gettransient() does registering
*/

(void)svc_register(xprt, x, 1, callback, 0);
ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC CALLBACK, xdr int, &x, xdr void, 0);
if (ans != RPC SUCCESS) {- -

}

f p r i n t f "(s t d er r, " call: ");
clnt_perrno(ans);
fprintf(stderr, "\n");

svc rune);
fprTntf(stderr, "Error: svc_run should not return\n");

callback(rqstp, transp)

{

register struct svc_req *rqstp;
register SVCXPRT *transp;

switch (rqstp->rq_proc) {
case NULLPROC:
if (!svc_sendreply(transp, xdr_void, 0),) {

fprintf(stderr, "err: callback\n");
exit(1) ;

}
pmap_unset(x,l).;

3 - 50 Additional RPC Examples

}

exiteD) ;
case 1:

}

if (lsvc_getargs(transp. xdr_void. D)) {
svcerr decode(transp);
exit(1);

}
fprintf(stderr. "client got callback\n");
if (lsvc sendreply(transp. xdr void. D)) {

fprintf(stderr. "err: c~llbackd\n");
exit(1) ;

}

RPC Programming Guide 3-51

/*
* server
*/

'include <stdio.h>
'include <rpc/rpc.h>
'include <sys/signal.h>
'include "example.h"

char *getnewprog();
char hostname[256];
int docallback();
u_long pnum=O; /* program number for callback routine */

main(argc, argyl

{

}

int argc;
char *argv[];

gethostname(hostname, sizeof(hostname»;
registerrpc(EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);
fprintf(stderr, "server going into svc_run\n");
signal(SIGALRM, docallback);
a 1 a rm (1 0) ;
svc run();
fpr1ntf(stderr, "Error: svc_run shouldn't return\n");

char *
getnewprog(pnump)

u_long *pnump;
{

}

pnum = *pnump;
return NULL;

docallback(
{

}

int ans;

ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0,
xdr void, 0);

if (ans !=-O) {

}

fprintf(stderr, "server: ");
clnt_perrno(ans);
fprintf(stderr, "\n");

3-52 Additional RPC Examples

Synopsis of RPe Routines

Routine auth_destroy()
Description A macro that destroys the authentication information

associated with auth. Destruction usually involves
deallocation of private data structures.

The use of auth is undefined after calling auth_destroy().

Synopsis void
auth_destroy(auth)

AUTH *auth;

Routine authnone _create ()
Description Creates and returns an RPC authentication handle that

passes no usable authentication information with each
remote procedure call.

This routine returns NULL if it fails.

Synopsis AUTH *
authnone create()

RPe Programming Guide 3 - 53

Routine

Description

Synopsis

Routine

Description

Synopsis

authunix_create()
Creates and returns an RPC authentication handle that
contains authentication information.

The parameter host is the node name on which the
information was created.

The parameter uid is the user's user ID.

The parameter gid is the user's current group ID.

The parameters len and aup -Kids refer to a counted array of
groups to which the user belongs.

This routine returns NULL if it fails.

AUTH *
authunix_create(host, uid, gid, len, aup_gids}

char *host;
int uid, gid, len, *aup_gids;

authunix _create _ default()
Calls authunix_create() with the appropriate parameters.

AUTH *
authunix_create_default(}

3 - 54 Synopsis of RPC Routines

Routine

Description

Synopsis

Note

callrpc()
Calls the remote procedure associated with prognum,
versum, and procnum on the host node.

The parameter in is the address of the procedure's
argument(s), and out is the address of where to place the
results.

The parameter inproc encodes the procedure's parameters,
and outproc decodes the procedure's results.

The clnt yelTllo() routine is useful for translating clnt _stat
return values into messages. This routine returns zero if it
succeeds or the value of enum clnt _stat cast to an integer if
it fails.

int
callrpc(host,prognum,versnum,procnum,inproc,in,outproc,out)

char *host;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;

Calling remote procedures with this routine uses UDP/IP as
a transport; see clntudp _create () for restrictions.

RPC Programming· Guide 3-55

Routine clnt broadcast()

Description Works like callrpc() except the call message is broadcast to
all locally connected broadcast networks.

Each time this routine receives a response, it calls
eachresult(), whose form is as follows.

bool_t
eachresult(out, addr)

char *out;
struct sockaddr_in *addr;

The parameter out is the same as out passed to
clnt _broadcast() except the remote procedure's output is
decoded in eachresult().

The parameter addr points to the host address that sent the
results.

If eachresult() returns FALSE, clnt_broadbast() waits for
more replies; otherwise, it returns the appropriate status.

Synopsis enum clnt stat
clnt_broadcast(prognum, versnum, procnum,

inproc, in, outproc, out, eachresult)
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
bool t eachresult;

3 - 56 Synopsis of RPC Routines

Routine

Description

Synopsis

A macro that calls the remote procedure procnum
associated with the client handle clnt. The clnt handle is
obtained with an RPC client creation routine such as
clntudp _ create ().

The parameter in is the address of the procedure's
arguments, and out is the address of where to place the
results.

The parameter inproc encodes the procedure's parameters,
and outproc decodes the procedure's results.

The parameter tout is the total time allowed for results to
return.

procnumenum clnt stat
clnt_call(clnt, procnum, inproc, in, outproc, out, tout)

CLIENT *c lnt;
long procnum;
xdrproc_t inproc, outproc;
char *in, *out;
struct timeval tout;

RPC Programming Guide 3 - 57

Routine

Description A macro that changes or retrieves information about an
RPC client. The req parameter determines the type of
operation and info is a pointer to the information. The
information will be contained in various types of struet's
depending on the value in req.

IIIJ: .. ::::::::::::::::::::::....... -_I _.I.' .. ::::}:::::::::::: .. ::.::: '
CLGET TIMEOUT struet timeval returns the value for

the amount of time
the client will wait
on the server before
returning a timeout
error

CLSET TIMEOUT

CLGET SERVER ADDR - -

Note

struet timeval

struet sockaddr

sets the value for the
amount of time the
client will wait on
the server before
returning a timeout
error

returns the address
of the server

CLGET TIMEOUT, CLSET TIMEOUT,
and CLGET SERVER ADDR are valid
ONLY for UDP basedRpC.

CLGET RETRY TIMEOUT struet timeval returns the value for
the amount of time
the client will wait
before resending a
request

- -

CLSET RETRY TIMEOUT struet timeval - -

3 - 58 Synopsis of RPC Routines

sets the value for the
amount of time the
client will wait
before resending a
request

Synopsis bool_t
clnt_control(cl. req. info)

CLIENT *cl;
int req;
char *info;

Note If CLSET _TIMEOUT is used to set the timeout value, then
the values that are sent in future calls to clnt _call () are
ignored because the value set with clnt_control has
overriding precedence.

RPe Programming Guide 3 - 59

Routine

Description

Synopsis

Note

A routine that will create an RPC client handle.

host identifies the name of the remote host where the
selVer is located.

prog and vers are the program number and the version
number of the selVer program.

proto indicates which kind of transport protocol to use to
link the selVer and client. Currently udp and tcp are the
supported values for this parameter. Default timeout values
are set, but can be modified using clnt_control.

CLIENT *
clnt_create(host, prog, vers, proto)

char * host;
u_long prog, vers;
char *proto;

A UDP-based RPC message can hold up to 8K bytes of
encoded data.

3 - 60 Synopsis of RPe Routines

Routine

Description

Synopsis

Routine

Description

Synopsis

clnt _ destroy()

A macro that destroys the client's RPC handle. Destruction
usually involves deallocation of private data structures,
including clnt.

You have the responsibility of closing sockets associated
with clnt, and must do so before calling clnt_destroy().

Use of clnt is undefined after calling clnt_destroy().
void
clnt_destroy(clnt)

CLIENT *clnt;

clnt Jreeres()
A macro that frees any data allocated by the RPC/XDR
system when it decoded the results of an RPC call on clnt.

The parameter out is the address of the results, and outproc
is the XDR routine describing the results in simple
primitives.

This routine returns TRUE if the results were successfully
freed or a FALSE if they were not.

bool t
clnt=freeres(clnt, outproc, out)

CLIENT *clnt;
xdrproc_t outproc;
char * out;

RPe Programming Guide 3-61

Routine clnt ~eterr()
Description A macro that copies the error structure out of the client

handle to the structure at address errp.

Synopsis void
clnt_geterr(clnt. errp)

CLIENT *c lnt;
struct rpc err *errp;

Routine clnt ycreateerror()
Description Prints a message to standard error indicating why a client

RPC handle could not be created; prints the string s and a
colon (:) before the message.

Use clnt ycreateerror() after a clntraw _create ()
Synopsis void

clnt_pcreateerror(s)
char *s;

3 - 62 Synopsis of RPe Routines

Routine clnt yerrno()

Description Prints a message to standard error corresponding to the
condition indicated by stat.

Use clntyerrno() after callrpc().

Synopsis void
clnt_perrno(stat)

enum clnt_stat stat;

Routine clnt yen-or()

Description Prints a message to standard error indicating why an RPC
call failed; prints the string s and a colon (:) before the
message.

Use clnt yen-or() after clnt _call().

Synopsis void
clnt_perror(clnt. s)

CLIENT *c lnt;
char *s;

RPC Programming Guide 3 - 63

Routine clnt _spcreatee"or()
Description Returns a string that contains a message telling why a client

RPC handle could not be created. The message in the
returned string will be preceded with the string s and a
colon(:). The string will contain the same text as is printed
when clnt ycreatee"or() is called.

Synopsis char *
clnt_spcreateerror(s)

char *s;

Note clnt_spcreateerrorO returns a pointer to static data so the
contents of the string are overwritten on each call to the
function.

Routine clnt _sperrno()

Description Returns a string that contains a message corresponding to
the condition indicated by stat. The string will contain the
same text as is printed when clnt yerrno() is called.

Synopsis char *
clnt_sperror (stat)

enum clnt stat stat;

3 - 64 Synopsis of RPe Routines

Routine clnt _spen-orO
Description Returns a string that contains a message telling why an

RPC call failed. The message in the returned string will be
preceded with the string s and a colon(:). The string will
contain the same text as is printed when clnt yen-orO is
called.

Synopsis char *
clnt_sperror (s)
char *s;

Note clnt_sperror returns a pointer to static data so the contents
of the string are overwritten on each call to the function.

Routine clntraw _create ()
Description This routine creates a simulated RPC client for the remote

program prognum, version versnum.

The transport used to pass messages to the service is
actually a buffer within the process address space, so the
corresponding RPC server must be in the same address
space. (See svcraw _create()).

This pair of routines allow simulation of RPC and
acquisition of RPC overheads (e.g., round trip times)
without kernel interference.

This routine returns NULL if it fails.

Synopsis CLIENT *
clntraw_create(prognum, versnum)

u long prognum, versnum;

RPe Programming Guide 3 - 65

Routine clnttcp _ create()

Description This routine creates an RPC client for the remote program
prognum, version versnum; the client uses TCPIIP as a
transport.

The remote program is located at Internet address *addr.

If addr- > sin yort is zero, it is set to the actual port on
which the remote program is listening. (The
clnttcp _create () function consults the remote portmap
service for this information.)

The parameter *sockp is a socket file descriptor; if it is
RPC _ ANYSOC, then this routine opens a new one and sets
*sockp.

Since TCP-based RPC uses buffered I/O, you can specify
the size of the send and receive buffers with the parameters
sendsz and recvsz; using values of zero causes
clnttcp _create () to choose reasonable defaults.

This routine returns NULL if it fails.

Synopsis CLIENT *
clnttcp_create(addr,prognum,versnum, sockp, sendsz,recvs z)

struct sockaddr_in *addr;
u_long prognum, versnum;
int *sockp;
u_int sendsz, recvsz;

3 - 66 Synopsis of RPC Routines

Routine

Description

Synopsis

Note

clntudp _ create()

This routine creates an RPC client for the remote program
prognum, version versnum; the client uses UDP/IP as a
transport.

The remote program is located at Internet address *addr.

If addr- >sm yort is zero, then it is sent to the port on
which the remote program is listening. (The
clntudp _create () function consults the remote portmap
service for this information.)

The parameter *sockp is a socket file descriptor; if it is
RPC ...fiNYSOCK, this routine opens a new socket and sets
*sockp.

The UDP transport resends the call message in intervals of
timeval wait until a response is received or until the call
times out. Use clnt_call() to specify the total timeout for
the call.

This routine returns NULL if it fails.

CLIENT *
clntudp_create(addr, prognum, versnum, wait, sockp)

struct sockaddr_in *addr;
u_long prognum, versnum;
struct timeval wait;
int *sockp;

UD P -based RPC messages can only hold up to 8K bytes of
encoded data.

RPe Programming Guide 3-67

Routine

Description

Synopsis

Note

Routine

Description

Synopsis

get_~yatUiress()

Places the node's IP address into *atUir without consulting
the library routines dealing with fete/hosts.

The port nu~ber is always set to htons(PMAPPORT).
void
get_myaddress(addr)

struct sockaddr_in *addr;

Use this routine to avoid using the yP service.

gettransient()
This function chooses a valid program number in the
transient range (Ox40000000 - Ox5fffffft) and registers it
with the.portmapper using the requested protocol proto and
version verso The value of proto is either IPPROTO _ TCP or
IPPROTO UDP.

If *sockp is RPC_ANYSOCK, then gettransient() obtains a
new socket and sets *sockp to it.

This routine returns the program number it registered or
zero if it fails.

u long
gettransient (proto, vers, sockp)

int proto;
u_10ng vers;
int *sockp;

3 - 68 Synopsis of RPe Routines

Routine pmap -Eetmaps()
Description A user interface to the portmap service; returns a list of the

current RPC program-to-port mappings on the host located
at IP address *addr.

The command rpcinfo -p uses this routine.

This routine returns NULL if no mappings exist.

Synopsis struct pmap 1 ist *
pmap_getmaps(addr)

struct sockaddr in *addr;

Routine pmap -Eetport()
Description A user interface to the portmap service; returns the port

number associated with a service that supports program
number prognum and version versnum, and speaks the
transport protocol associated with protocol.

A return value of zero means the mapping does not exist or
the RPC system failed to contact the remote portmap
service. In the latter case, the global variable rpc _ createerr
contains the RPC status.

Synopsis u short
~ap_getport(addr, prognum, versnum, protocol)

struct sockaddr_in *addr;
u long prognum, versnum, protocol;

RPe Programming Guide 3 - 69

Routine

Description

Synopsis

A user interface to the portmap service; instructs portmap
on the host at IP address *addr to make an RPC call on
your behalf to a procedure on that host.

The parameter *portp is modified to the program's port
number if the procedure succeeds.

Calls the remote procedure associated with prognum,
versnum, and procnum on the host node.

The parameter in is the address of the procedure's
argument(s), and out is the address of where to place the
results.

The parameter inproc encodes the procedure's parameters,
and outproc decodes the procedure's results.

The parameter tout is the time allowed for results to return.

Use this procedure for an "are you there" query and nothing
else. (See clnt_broadcast().)
enum c lnt stat
pmap_rmtcall(addr, prognum, versnum, procnum,

inproc, in, outproc, out, tout, portp)
struct sockaddr in *addr;
u_long prognum,-versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
struct timeval tout;
u_long *portp;

3 - 70 Synopsis of RPe Routines

Routine

Description

Synopsis

Routine

Description

Synopsis

pmap_set()
A user interface to the portmap service; establishes a
mapping between the triple [prognum, versnum,protocol]
and port on the node's portmap service.

The value of protocol is either IPPROTO _ UDP or
IPPROTO TCP.

The svc _register() function automatically calls the
pmap _set() function.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
pmap=set(prognum, versnum, protocol, port)

u_long prognum, versnum, protocol;
u_short port;

pmap_unset()
A user interface to the portmap service; destroys· all
mappings between the triple [prognum, versnum, *] and
ports on the node's portmap service.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
pmap=unset(prognum, versnum}

u_long prognum, versnum;

RPe Programming Guide 3-71

Routine registenpc()
Description Registers procedure procname with the RPC service

package.

If a request arrives for program prognum, version versnum,
and procedure procnum, procname is called with a pointer
to its parameter(s).

The parameter procname should return a pointer to its
static result(s).

The parameter inproc decodes the parameters while outproc
encodes the results.

This routine returns a 0 (zero) if the registration succeeds
or -1 if it does not.

Synopsis int
registerrpc(prognum,versnum,procnum,procname,inproc,outproc)

u_long prognum, versnum, procnum;
char *(*procname)();
xdrproc_t inproc, outproc;

Note Remote procedures registered in this form are accessed
using the UDP/IP transport; see svcudp _create () for
res trictions.

3 - 72 Synopsis of RPe Routines

Variable rpc _ createerr
Description A global variable whose value is set by any RPC client

creation routine that does not succeed.

Use the clnt ycreateerror() routine to print the reason why
the creation routine did not succeed.

Synopsis struct rpc_createerr rpc_createerr;

Routine svc _ destroy()

Description A macro that destroys the RPC service transport handle
xprt. Destruction usually involves de allocation of private
data structures, including xprt.

Use of xprt is undefined after calling this routine.

Synopsis void
svc_destroy(xprt)

SVCXPRT *xprt;

RPe Programming Guide 3 - 73

Variable svcJds
Description A global variable reflecting the RPC service side's read file

descriptor bit mask.

This variable is of interest only if you do not call svcJUn(),
but rather implement asynchronous event processing.

This variable is read-only, yet it may change after calls to
svc ..Eetreq() or any creation routines.

Synopsis int svc_fds;

Note Do not use svc Jds by itself as an argument to select() since
select() modifies its arguments. (Doing so will remove the
RPC service side file descriptor mask.) You should copy the
svc Jds value to a temporary variable for use.

3 - 74 Synopsis of RPe Routines

Routine svcJdset

Description A global variable reflecting the RPC service side's read file
descriptor bit mask.

This variable is of interest only if you do not call svc_lUn(),
but rather implement asychronous event processing.

This variable is read-only, yet it may change after calls to
svc -Eetreqset(). This variable is very similar to svc Jds, but it
is not restricted to 32 descriptors as svc Jds is. It can handle
up to NOFILE (as defined in /usr/include/syslparam.h)
number of descriptors.

Synopsis fd_set svc_fdset;

Note Do not use svc Jdset by itself as an argument to select()
since select() modifies its arguments (doing so will remove
the RPC service side file descriptor mask). You should copy
the svc Jdset value to a temporary variable for use.

Routine svc Jreeargs()

Description A macro that frees any data allocated by the RPC/XDR
system when it decoded the arguments to a service
procedure using svc-Eetargs().

This routine returns TRUE if the results were successfully
freed or FALSE if they were not.

Synopsis bool t
svc_freeargs(xprt, inproc, in)

SVCXPRT *. xprt;
xdrproc_t inproc;
char *in;

RPe Programming Guide 3 - 75

Routine

Description

Synopsis

Routine

Description

Synopsis

svc ~etargs()

A macro that decodes the arguments of an RPC request
associated with the RPC service transport handle xprt.

The parameter in is the address where the arguments will
be placed.

The parameter inproc is the XDR routine used to decode
the arguments.

This routine returns TRUE if decoding succeeds or FALSE
if it does not.

hool t
svc_getargs(xprt, inproc, in)

SVCXPRT *xprt;
xdrproc t inproc;
char *in;

svc ~etcaller()

The approved way in which the server with the RPC service
transport handle xprt obtains the network address of the
caller.

This routine returns NULL if it fails.

struct sockaddr in *
svc_getcaller(xprt)

SVCXPRT *xprt;

3 - 76 Synopsis of RPC Routines

Routine svc ~etreq ()
Description This routine is of interest only if you do not call svc _run (),

but rather implement custom asynchronous event
processing. Use svc~etreq() when the select() system call
determines that an RPC request arrived on an RPC socket.

The parameter rdfds is the read file descriptor bit mask as
modified by the select () call.

The routine returns after all sockets associated with the
value of rdfds were serviced.

Synopsis void
svc_getreq(rdfds)

int rdfds;

Routine svc ~etreqset()
Description This routine is of interest only if you do not call svc JUn,

but rather implement custom asynchronous event
processing. Use svc ~etreqset() when the select() system call
determines that an RPC request arrived on an RPC socket.

The parameter rdfds is the read file descriptor bit mask as
modified by the select() call.

The routine returns after all sockets associated with the
value of rdfds are serviced.

This routine is similar to svc ~etreq (), except that it is not
restricted to 32 descriptors as is svc~etreq(). It can handle
up to NOFILE (as defined in /usr/include/sys/param.h)
number of descriptors.

Synopsis void
svc_getreqset(rdfds}

fd_set * rdfds;

RPC Programming Guide 3 -77

Routine

Description

Synopsis

svc Jegister()
Associates prognum and versnum with the service dispatch
procedure dispatch ().

If protocol is zero, the service is not registered with the
portmap service.

If protocol is non-zero, a mapping of the triple
[prognum, versnum,protocolJ to xprt-> xp JJort is established
with the local portmap service (generally protocol is zero,
IPPROTO_UDP, or IPPROTO_TCP).

The procedure dispatch () has the following form.

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

The svc Jegister() routine returns TRUE if it succeeds or
FALSE if it does not.

The procedure dispatch () has the following form.

bool t
svc_register(xprt, prognum, versnum, dispatch, protocol)

SVCXPRT *xprt;
u_long prognum, versnum;
void (*dispatch)();
u_long protocol;

3 - 78 Synopsis of RPC Routines

Routine

Description

Synopsis

Routine

Description

Synopsis

svc_run()
This routine never returns. It waits for RPC requests to
arrive and calls the appropriate service procedure using
svc ~etreq () when one arrives.

This procedure is usually waiting for a select() system call
to return.

void
svc_run()

svc _sendreply()
Called by an RPC service's dispatch routine to send the
results of a remote procedure call.

The parameter xprt is the caller's associated transport
handle.

The parameter outproc is the XDR routine used to encode
the results.

The parameter out is the address of the results.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
svc_sendreply(xprt, outproc, out)

SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

RPe Programming Guide 3-79

Routine svc _ unregister()

Description Removes all mappings of the double [prognum, versnum] to
dispatch routines and of the triple [prognum, versnum, *] to
port number.

Synopsis void
svc_unregister(prognum, versnum}

u_long prognum, versnum;

Routine svce" _ auth()
Description Called by a service dispatch routine that refuses to perform

a remote procedure call because of an authentication error.

See <rpc/auth.h> for valid auth _stat values.

Synopsis void
svcerr_auth(xprt, why}

SVCXPRT *xprt;
enum auth stat why;

3 - 80 Synopsis of RPC Routines

Routine svcerr _ decode ()
Description Called by a service dispatch routine that cannot successfully

decode its parameters. (See svc...,getargs().)
Synopsis void

svcerr_decode(xprt)
SVCXPRT *xprt;

Routine svcerr noproc()
Description Called by a service dispatch routine that does not

implement the desired procedure number the caller
requested.

Synopsis void
svcerr_noproc(xprt)

SVCXPRT *xprt;

RPC Programming Guide 3-81

Routine svce" _ noprog()
Description Called when the desired program is not registered with the

RPC package.

Synopsis void
svcerr_noprog(xprt)

SVCXPRT *xprt;

Routine svce"-progve~()
Description Called when the desired version of a program is not

registered with the RPC package.

Synopsis void
svcerr_progvers(xprt)

SVCXPRT *xprt;

3 - 82 Synopsis of RPC Routines

Routine svcen-_ systemen-()
Description Called by a service dispatch routine when it detects a

system error not covered by any particular protocol. For
example, if a service can no longer allocate storage, it may
call this routine.

Synopsis void
svcerr_systemerr(xprt)

SVCXPRT *xprt;

Routine svcen-_ weakauth()

Description Called by a service dispatch routine that refuses to perform
a remote procedure call because of insufficient, but possibly
correct, authentication parameters.

Synopsis void
svcerr_weakauth(xprt)

SVCXPRT *xprt;

RPe Programming Guide 3-83

Routine

Description

Synopsis

svcfd _ create ()

This routine creates a TCP/IP-based RPC service transport
from an existing socket to which it returns a pointer. Use
this routine when you receive a socket from the inetd(lM).

The sock parameter must be a valid file descriptor for an
active socket (i.e., you already executed the listen() and
accept() calls to obtain this socket).

Since TCP-based RPC uses buffered I/O, you can specify
the size of the send() and recv() buffers; using values of
zero causes svcfd_create() to choose reasonable defaults.

Upon completion, the xp _sock field contains the transport's
socket number and the xp yort field contains the transport's
port number.

See clnttcp _create ().

This routine returns NULL if it fails.

SVCXPRT *
svcfd_create(sock. send_buf_size. recv_buf_size)

int sock;
u_int send_buf_size. recv_buf_size;

3 - 84 Synopsis of RPe Routines

Routine svcraw _create ()
Description This routine creates a simulated RPC service transport to

which it returns a pointer.

The transport is a buffer within the process' address space,
so the corresponding RPC client must exist in the same
address space. (See clntraw _create ().)

This routine allows simulation of RPC and acquisition of
RPC overheads (e.g., round trip times) without kernel
interference.

This routine returns NULL if it fails.

Synopsis SVCXPRT *
svcraw_create()

RPe Programming Guide 3 - 85

Routine

Description

Synopsis

svctcp _ create()

This routine creates a TCP/IP-based RPC service transport
to which it returns a pointer.

The transport is associated with the socket file descriptor
sock; if the sock is RPC_ANYSOCK, a new socket is created

If the socket is not bound to a local TCP port, this routine
binds it to an arbitrary port.

Since TCP-based RPC uses buffered I/O, you can specify the
size of the send() and recv() buffers; using values of zero
causes svctcp _create () to choose reasonable defaults.

Upon completion, the xp _sock field contains the transport's
socket number and the xp yort field contains the transport's
port number.

See cInttcp _create ().

This routine returns NULL if it fails.

SVCXPRT *
svctcp_create(sock. send_buf_size. recv_buf_size)

int sock;
u int send buf size. recv buf size;

3 - 86 Synopsis of RPC Routines

Routine svcudp _create ()
Description This routine creates a UDPIIP-based RPC service transport

to which it returns a pointer.

The transport is associated with the socket file descriptor
sock; if sock is RPC _ANYSOCK, a new socket is created.

If the socket is not bound to a local UDP port, this routine
binds it to an arbitrary port.

Upon completion, the xp _sock field contains the transport's
socket number and the xp yort field contains the transport's
port number.

This routine returns NULL if it fails.

Synopsis SVCXPRT *
svcudp_create(sock}

int sock;

Note UDP-based RPC messages only hold up to 8K bytes of
encoded data.

RPC Programming Guide 3 - 87

Routine xdr _accepted Jeply()

Description This routine is useful if you wish to generate RPC-style
messages without using the RPC package.

The accepted Jeply structure is defined in <rpc/rpc _ msg.h >.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool t
xdr_accepted_reply(xdrs, ar)

XDR *xdrs;
struct accepted reply *ar;

Routine xdr _ authunix yarms()

Description This routine is useful if you wish to generate these
credentials without using the RPC authentication package.

The authunix yarms structure is defined in
<rpc/auth _ unix.h >

Synopsis bool t
xdr_authun ix_parms (xdrs, aupp)

XDR *xdrs;
struct authunix_parms *aupp;

3 - 88 Synopsis of RPe Routines

Routine xdr _ callhdr()

Description This routine is useful if you wish to generate RPC-style
messages without using the RPC package.

The rpc _ msg structure is defined in <rpc/rpc _ msg.h >.
Synopsis bool t

xdr_callhdr(xdrs, chdr)
XDR *xdrs;
struct rpc msg *chdr;

Routine xdr _ callmsg()

Description This routine is useful if you wish to generate RPC-style
messages without using the RPC package.

The rpc msg structure is defined in <rpc/rpc_msg.h>.
Synopsis bool t

xdr_callmsg(xdrs, cmsg)
XDR *xdrs;
struct rpc msg *cmsg;

RPe Programming Guide 3 - 89

Routine xdr_opaque_auth()

Description This routine is useful if you wish to generate RPC-style
messages without using the RPC package.

The opaque_auth() structure is defined in <rpc/auth.h>.

Synopsis bool t
xdr_opaque_auth(xdrs, ap)

XDR *xdrs;
struct opaque auth *ap;

Routine xdrymap()

Description This routine is useful if you wish to use XDR to encode or
decode portmap structures without using the pmap
interface.

The pmap structure is defined in <rpc/pmap yrot.h >.
Synopsis bool t

xdr_pmap(xdrs, regs)
XDR *xdrs;
st ruct pmap *regs;

3 - 90 Synopsis of RPe Routines

Routine xdr ymaplist()
Description This routine is. useful if you wish to useXDR to encode or

decode portmap,structures without using. the pmap
interface.

The pmaplist structure is defined in <rpc/pmap yrot.h >.
Synopsis bool t

xdr_pmaplist(xdrs, rp)
XDR *xdrs;
struct pmap 1 ist **rp;

Routine xdr _rejected Jeply()
Description This routine is useful if you wish to generate RPC-style

messages without using the RPC package.

The rejected _reply structure is defined in <rpc/rpc _msg.h >.
Synopsis bool t

xdr_rejected_reply(xdrs, rr)
XDR *xdrs;
struct rejected_reply *rr;

RPe Prog'ramming Guide 3..;... 91

Routine xdr replymsg()
Description This routine is useful if you wish to generate RPC-style

messages without using the RPC package.

The rpc msg structure is defined in <rpc/rpc J1lsg.h >.
Synopsis bool t

xdr_replymsg(xdrs, rmsg)
XDR *xdrs;
struct rpc msg *rmsg;

3 - 92 Synopsis of RPC Routines

Routine xprt Jegister()
Description After RPC service transport handles are created, they

should register with the RPC service package.

This routine modifies the global variable svc Jds.
Synopsis void

xprt_register(xprt)
SVCXPRT *xprt;

Routine xprt _ unregister()

Description Before an RPC service transport handle is destroyed, it
should unregister with the RPC service package.

This routine modifies the global variable svc Jds.
Synopsis void

xprt_unregister(xprt)
SVCXPRT *xprt;

RPC Programming Guide 3-93

3-94

4

RPCGEN Programming Guide

Introduction
This chapter explains the use of the Remote Procedure Call Protocol
Compiler (RPCGEN) to convert applications that run on a single computer to
ones that will run over a network.

This chapter assumes that you are familiar with HP-UX, the C programming
language, Remote Procedure Calls (RPC), and networking (If you need a
review of RPC programming without RPCGEN, see the "RPC Programming
Guide" chapter).

Writing applications to use Remote Procedure Calls can be time consuming
and difficult. Perhaps the most difficult part is writing XDR routines necessary
to convert arguments and results into their network form and vice versa.
RPCGEN helps you write RPC applications simply and directly. It allows you
to debug the main features of your application, instead of spending your time
debugging network interface code.

RPCGEN Programming Guide 4-1

The Remote Procedure Call Protocol
Compiler
RPCGEN is a compiler. It accepts remote program interface definitions
written in RPC (Remote Procedure Call) language, which is similar to C. It
produces C language output including:

• header file

• client side subroutine file (client stub)

• server side skeleton file (server side stub)

• XDR routines file

The client side subroutine file and the server side skeleton file are called
"stubs." The client stubs interface with the RPC library and effectively shield
the user from the network. The server stub similarly shields the server
procedures, invoked by remote clients, from the network. RPCGEN's output
files can be compiled and linked in the normal way with your C compiler. You
write server procedures and link them with the server skeleton produced by
RPCGEN to produce an executable server program. To use a remote
program, you write an ordinary main program that makes local procedure calls
to the client stubs produced by RPCGEN. Linking this program with
RPCGEN's stubs creates an executable program.

Converting Local Procedures into Remote
Procedures
The following section illustrates the conversion of a simple example
application program running on a single computer to a version that runs over
the network.

The first file is the simple application provided by the user-a program that
prints a message on the console.

4-2 The Remote Procedure Call Protocol Compiler

EXAMPLE:

/*
* printmsg.c:print a message on the console
*/

#include <stdio.h>

main(argc, argyl
int argc;

{
char *argv[];

char *message;

if (argc != 2) {

}

fprintf(stderr, "usage: %s <message>\n", argv[O]);
exit(1) ;

message = argv[l];

if (!printmessage(message)) {

}

fprint(stderr, "Is: couldn't print your message\n",
argv[O]) ;

exit(1) ;

printf("Message delivered!\n");
exit(O);

}
/*
* Print a message to the console.
* Return a boolean indicating whether the message was actually printed.
*/

printmessage(msg)
char *msg;

{

}

FILE *f;

f = fopen("/dev/console", "w");
if (f == NULL) {

return (0);
}
fprint(f, "%s\n", msg);
fclose(f) ;
return(1) ;

RPCGEN Programming Guide 4-3

When you compile and run this simple application, the message is printed on
your console.

% cc printmsg.c -0 printmsg
% printmsg "Hello, there."
Message delivered!
%

If you were to convert your printmessage application into a remote procedure,
it could be called from anywhere on the network. To convert a procedure into
a remote procedure, you must work within the constraints of the C language,
since it existed long before RPC did. But even without language support, it is
not very difficult to make a procedure remote.

In general, it is necessary to determine what the types are for all procedure
inputs and outputs. In this case, you have a procedure printmessage which
takes a string as input and returns an integer as output.

1. Writing the RPC Protocol Specification

The first step in converting a program to a remote procedure is to write a
protocol description file in RPC language that describes the remote version of
your application program (printmessage in this case). The code for the msg.x
description file is as follows:

/*
* msg.x: Remote message printing protocol
*/

program MESSAGEPROG {
version MESSAGEVERS {

int PRINTMESSAGE(string) 1;
} = 1;

} = 99;

Remote procedures are part of remote programs, so you actually declared an
entire remote program here which contains the single procedure
PRINTMESSAGE. This procedure was declared to be in version 1 of the
remote program. No null procedure (procedure 0) is necessary because
RPCGEN generates it automatically.

The program, version, and procedure are declared using all capital letters.
This is not required, but is a good convention to follow.

4-4 Converting Local Procedures into Remote Procedures

Notice that the argument type is string and not char*. This is because a char*
in C is ambiguous. Programmers usually intend it to mean a null-terminated
string of characters, but it could also represent a pointer to a single character
or a pointer to an array of characters. In RPC language, a null-terminated
string is unambiguously called a string.

2. Writing the Remote Procedure

The second step is to write the remote procedure itself. Following is the
definition of a remote procedure (msgyroc.c) to implement the
PRINTMESSAGE procedure you declared above:

EXAMPLE:

/*
*msg_proc.c: implementation of the remote procedure "printmessage"
*/

'include <stdio.h>
'include <rpc/rpc.h> /* always needed */
'include "msg.h" /* need this too: msg.h will be generated by rpcgen */

/*
* Remote version of "printmessage"
*/

int *
printmessage_l(msg)

{

}

char **msg;

static int result; /* must be static! */
FILE *f;

f = fopen("/dev/console". "w");
if (f == NULL) {

result = 0;
return (&result);

}
fprint(f. "%s\n". *msg);
fclose(f);
result = 1;
return (&result);

The declaration of the remote procedure printmessage _1 differs from that of
the local procedure printmessage in three ways:

• It takes a pointer to a string instead of a string itself. This is true of all
remote procedures: they always take pointers to their arguments rather
than the arguments themselves.

RPCGEN Programming Guide 4- 5

• It returns a pointer to an integer instead of an integer itself. This is true of
remote procedures: they always return a pointer to their results.

• It has a _1 appended to its name. In general, all remote procedures called by
RPCGEN are named by the following rule: convert the name in the
program definition (here PRINTMESSAGE) to all lowercase letters, and
append an underbar (-> and the version number (in this case, number 1).

3. Creating the Main Client Program

The third step is to create the main client program (rprintmsg.c) that will call
the remote procedure.

EXAMPLE:

/*
*rprintmsg.c: remote version of "printmsg.c"
*/

'include <stdio.h>
'include <rpc/rpc.h> /* always needed */
'include "msg.h" /* need this too: msg.h will be generated by rpcg

main(argc, argv)
int argc;

{
char *argv[];

CLIENT *cl;
int *resu1t;
char *server;
char *message;

if (argc < 3) {

}

fprint(stderr, "usage: %s host message\n", argv[O]);
exit(1) ;

/*
* Save values of command line arguments
*/

server = argv[l];
message = argv [2] ;

/*
* Create client "handle" used for calling MESSAGEPROG on the
* server designated on the command line. You tell the RPC
* package to use the "tcp" protocol when contacting the server
*/

4-6 Converting Local Procedures into Remote Procedures

}

cl = clnt create(server, MESSAGEPROG, MESSAGEVERS, "tcp");
if (cl -NULL) {

/*
* Couldn't establish connection with server.
* Print error message and quit.
*/

clnt_pcreateerror(server);
exit(1) ;

}

/*
* Call the remote procedure "printmessage" on the server
*/

result = printmessage_l(&message, cl):
if (result == NULL) {

}

/*
* An error occurred while calling the server.
* Print error message and quit.
*/

clnt_perror(cl, server);
exit(1) ;

/*
* Okay, you successfully called the remote procedure.
*/

if (*result == 0) {

}

/*
* Server was unable to print our message.
* Print error message and quit.
*/

fprint(stderr, "%s: %s couldn't print your message\n",
argv[O], server);

exit(1) ;

/*
* The message got printed on the server's console.
*/

printf("Message delivered to %s!\n", server);

A client handle is created using the RPC library routine clnt_create (a handle
is a data structure that is used to specify a certain client when the rpc routines
are called). This client handle will be passed to the stub routines which call
the remote procedure.

The remote procedure printmessage _1 is called the same way as it is declared
in msgyroc.c except for the inserted client handle as the second argument.

RPCGEN Programming Guide 4-7

4. Compiling the Files

The next step is to execute RPCGEN on the msg.x file and then compile and
link the files to form the client and server programs that comprise the example
remote message printing application. The following example shows what to
enter:

% rpcgen msg.x
% cc rprintmsg.c msg_clnt.c -0 rprintmsg
% cc msg_proc.c msg_svc.c -0 msg_server

From the protocol description file (the input file msg.x), RPCGEN creates the
following files:

• A header file named msg.h containing #define's for MESSAGEPROG,
MESSAGEVERS, and PRINTMESSAGE for use in the other modules.

• Client stub routines in the msg_clnt.c file. In this case, there is only one: the
printmessage _1 that was referred to from the printmsg client program. The
name of the output file for client stub routines is always formed in this way:
if the name of the input file is TEST.x, the client stubs output file is called
TEST clnt.c.

• The server side skeleton file msg_ svc.c. This server program calls
printmessage _1 in msgyroc.c. The rule for naming the server output file is
similar to the previous one: for an input file called TEST.x, the server side
skeleton file is named TEST svc.c.

4-8 Converting Local Procedures into Remote Procedures

In addition, two programs are produced by the compiler:

• the client program rprintmsg

• the server program msg_selVer

5. Testing the Results

Now you are ready to test the results.

8. Copy the server to a remote computer and run it. In this example, the
computer is named nodel. Server processes are run in the background,
because they never exit.

nodel% mS9_server &

b. On your local computer (node2), print a message on nodel's console.

node2% rprintms9 nodel "Hello nodel".

The message will be printed on nodel's console. You can print a message on
anyone's console (including your own) with this program if you are able to
copy the server to their computer and run it.

Generating XDR Routines
The example in the previous section only demonstrated the automatic
generation of client and server RPC code. RPCGEN may also be used to
generate XDR routines-the routines necessary to convert local data
structures into network format and vice-versa.

You must provide three of the files required to convert a single-system
application to run on a network. Four of the files are produced by the
RPCGEN compiler.

RPCGEN Programming Guide 4-9

Files you must produce
• protocol description file (suffIXed with.x)

• client side file (suffIXed with .c)

• server side function file (suffIXed with yroc.c)

Files produced by RPCGEN
In addition to the file you create, RPCGEN produces four files from your.x
file:

• header file (suffIXed with .h) containing the const's, typedefs, and struct's
used to communicate data structures among all of the portions of the
application program

• client side subroutine file (suffIXed with _clnt.c) which is a collection of
the function stubs

• server side skeleton file (suffIXed with _svc.c), the main C program for
the server process

• XDR routine file (suffIXed with _xdr.c) used to translate the arguments
and results between the client and server processes

All of these files are prefIXed with the main portion of the name of the .x file.
For example, if you have a .x file named remsh.x, RPCGEN will produce the
following files: remsh.h, remsh_clnt.c, remsh_svc.c, and remsh_xdr.c.

4 -1 0 Generating XDR Routines

The following example files illustrate a complete RPC service-a remote
directory listing service, which uses RPCGEN not only to generate stub
routines, but also to generate the XDR routines. The following illustration
shows the files produced by RPCGEN acting on your rls.x file and the
additional files that you must create.

rls.h

rpcgen -u rls.~
rls clnt.c
rls-svc.c
rls -xdr.c

rls.c /* The client side program */
rls _proc.c /* The server side functions * /

Relationship of programmer supplied files to files created by RPCGEN

The Protocol Description File (The Input File)
The first file, produced by you, is the protocol description file (the input file).
It is written in a C-like language and is stored in a file suffIXed with.x. This
file describes the necessary data structure involved in producing a remote
directory listing.

EXAMPLE:

/*
* r1s.x: Remote directory listing protocol
*/

const MAXMANELEN = 255; /* maximum length of a directory entry */

/* This definition is specific to RPCGEN. It is */
/* different from C syntax. It defines a variable */
/* length string. */

typedef string nametype<MAXNAMELEN>; /* a directory entry */

typedef struct namenode *name1ist; /* a link in the listing */

/*
* A node in the directory listing
*/

struct namenode {
nametype name; /* name of directory entry */

RPCGEN Programming Guide 4-11

namelist next; /* next entry */
} ;

/*
* The result of a READDIR operation.
*/

union readdir_res switch (int errno) {
case 0:

namelist list; /* no error: return directory listing */
defau 1t:

void; /* error occurred: nothing else to return
} ;

/*
* The directory program definition
*/

/* This definition is specific to RPCGEN. It is */
/* different from C syntax. It defines what a remote */
/* program consists of. */
program RLSPROG {

version RLSVERS {
readdir res

} = 1;
} 76;

READDIR(nametype) 1;

The Header File
The next file is the header file (rls.h in this example); it is created by
RPCGEN. This file ties all of the other files together. rls.h is a C-Ianguage
version of the rZs.x file.

EXAMPLE:

'define MAXNAMELEN 255

typedef char *nametype;
bool_t xdr_nametype();

typedef struct namenode *namelist;
bool_t xdr_namelist();

struct namenode {
nametype name;
namelist next;

} ;
typedef struct namenode namenode;
bool_t xdr_namenode();

4 -12 Generating XDR Routines

struct readdir_res {
int errno;
union {

} ;

namelist list;
} readdir_res_u;

typedef struct readdir res readdir res;
bool_t xdr_readdir_res(); -

#define RLSPROG ((u long)76)
#define RLSVERS ((u-long)l)
#define READDIR ((u-long)l)
extern readdir_res *readdir_l();

The Client Side File
The client side file (r[s.c in this example) is produced by you. It includes code
to do the following:

• Create the user interface

• Make the connection to the server computer

• Make the call to the server and read a directory on the server

• Decode and print the results

EXAMPLE:

/*
* rls.c Remote directory listing client
*/

#include <stdio.h>
#include <rpc/rpc.h> /* always need this */
#include "rls.h" /* need this too:

will be generated by rpcgen */

extern int errno;

main(argc. argv)
int argc;
char *argv[];

{
CLIENT *cl. *clnt create();
char *server; -
char *dir;
readdir_res *result;
name 1 is t n 1 ;

if (argc !=3) {

RPCGEN Programming Guide 4-13

}

fprint(stderr, "usage: %s host directory\n", argv[O]);
exit(1) ;

/*
* Remember what our command line arguments refer to
*/

server = argv[l];
dir = argv[2];

/*
* Create client "handle" used for calling MESSAGEPROG on the
* server designated on the command line. You tell the rpc
* package to use the "tcp" protocol when contacting the server
*/

cl = clnt create(server, RLSPROG, RLSVERS, "tcp");
if (cl -NULL) {

}

/*
* Couldn't establish connection with server.
*/

clnt_pcreateerror(server);
exit(l);

/*
* Call the remote procedure "readdir" on the server
*/

result = readdir l(&dir, cl);
if (result == NULL) {

}

/*
* An error occurred while calling the server.
* Print error message and die.
*/

clnt_perror(cl, server);
exit(1);

/*
* Okay, You successfully called the remote procedure.
*/

if (result->errno != 0) {

}

/*
* A remote system error occurred.
* Print error message and die.
*/

errno = result->errno;
perror(dir);
exit(l);

/*
* Successfully got a directory listing.
* Print it out.

4 - 14 Generating XDR Routines

}

*/
for (nl = result->readdir res u. list; nl != NULL; nl

printf("%s\n", nl-;name);
}

nl->next) {

RPCGEN Programming Guide 4-15

The Client Side Subroutines File
The next file (rls_clnt.c in this example) is created by RPCGEN. The rls_clnt.c
file contains the client side stubs that are called by rls.c to transmit the
arguments and receive the results. The rls_clnt.c file defines only one routine,
readdir _1 (). This is because the program definition in the rls.x file contained
only one procedure.

EXAMPLE:

#include <rpc/rpc.h>
#include <sys/time.h>
#include "rls.h"

#ifdef hpux

#ifndef NULL
#define NULL 0
#endif NULL

#endif hpux

static struct timeval TIMEOUT {25, O};

readdir res *
readdir=l(argp, clnt)

nametype *argp;
CLIENT *clnt;

{
static readdir_res res;

ifdef hpux
memset(&res, 0, sizeof(res));

#else hpux
memset(&res, sizeof(res));

#endif hpux

}

if (clnt_call(clnt, READDIR, xdr_nametype, argp,

}

xdr readdir res, &res, TIMEOUT) !=RPC_SUCCESS) {
- return (NULL);

return (&res);

4 -16 Generating XDR Routines

The Server Side Skeleton File
The next file (rls_svc.c in this example), created by RPCGEN, contains the
main program for the server side. It registers the rlsprog_10 routine with the
se-lVer computer and then waits for an incoming request by calling svc_mnO.
Note that by default, RPCGEN provides code to handle both TCP and UDP
protocols. You can specify which protocol the selVer code will use by invoking
the -s option when you execute RPCGEN. When svcJUn receives a request,
it calls rlsprog_10 which connects to the function supplied by you in the
rlSfloc.c file which does the actual work. The result of the call is then
transmitted back to the requestor. The signal handling code is added when the
"-u" option is used with RPCGEN.

EXAMPLE:

#include <stdio.h>
#include <rpc/rpc.h>
#include "rls.h"

void un_register_prog(signo)
int signo;
{

}

pmap_unset(RLSPROG,RLSVERS);
exit(1) ;

static void rlsprog_l();

main()
{

SVCXPRT * transp;

pmap_unset(RLSPROG, RLSVERS);

(void) signal(SIGHUP, un_register_prog);
(void) signal(SIGINT, un_register_prog);
(void) signal(SIGQUIT, un_register_prog):
(void) signal(SIGTERM, un_register_prog);

transp = svcudp_create(RPC_ANYSOCK);
if (transp == NULL) {

}

fprintf(stderr, "cannot create udp service. \n");
exit(1) ;

if (!svc_register(transp, RLSPROG, RLSVERS, rlsprog_l, IPPROTO_UDP» {
fprint(stderr,

}

"unable to register (RLSPROG, RLSVERS, udp). \n");
exit(1) ;

RPCGEN Programming Guide 4-17

transp = svctcp_create(RPC_ANYSOCK, 0, 0);
if (transp == NULL) {

fprint(stderr, "cannot create tcp service.\n");
exit(l);

}

}
if (!svc_register(transp, RLSPROG, RLSVERS,

fprintf(stderr,

}

"unable to register (RLSPROG,
exit(1) ;

svc run () ;
fprintf(stderr, "svc_run returned\n");
exit(1) ;

static void
rlsprog_1(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
union {

nametype readdir_1_arg;
} argument;
char *result;
bool t (*xdr argument)(),(*xdr result)();
char-*(*local)(); -

switch (rqstp->rq_proc) {
case NULLPROC:

rlsprog_1, IPPROTO_TCP» {

RLSVERS, tcp).\n");
(

svc_sendreply(transp, xdr_void, NULL);
return;

case READDIR:
xdr argument = xdr_nametype;
xdr-result = xdr readdir res;
local = (char *(*) () readdir 1;
return;

default:
svcerr_noproc(transp)
return;

}
#ifdef hpux

memset(&argument, 0, sizeof(argument»;
#else hpux

memset(&argument, sizeof(argument»;
#endif hpux

if (!svc_getargs(transp, xdr_argument, &argument» {
svcerr_decode(transp);
return;

}
result = (*local)(&argument, rqstp):
if (result != NULL && !svc_sendreply(transp, xdr_result,

result» {

4-18 Generating XDR Routines

}

svcerr_systemerr(transp);
}
if (!svc_freeargs(transp, xdr_argument, &argument)) {

fprintf(stderr, "unable to free arguments\n");
exit(1) ;

}

The Server Side Function File
This file (ris yroc.c in this example) is written by you. It contains the code to
produce the actual server portion of the application. In the following example,
the code opens a directory, reads it and places the results in the result
structure (st1Uct) that was defined by the ris.x file.

EXAMPLE:

/*
* rls_proc.c: remote readdir implementation
*/

#include <rpc/rpc.h>
#include <sys/dir.h>
#include <stdio.h>
#include "rls.h"

extern int errno;
extern char *malloc();
extern char *strcpy();

readdir res*
readdir-l(dirname)

nametype *dirname;
{

OIR *dirp;
stuct direct *d;
namelist nl;
namelist *nlp;
static readdir_res res;

/*
* Free previous result
*/

/* must be static! */

xdr_free(xdr_readdir_res, &res);

/*
* Open directory
*/

dirp = opendir(*dirname);
if (dirp == NULL) {

res.errno = errno;

RPCGEN Programming Guide 4-19

}

return (&res);
}

/*
* Collect directory entries
*/

nlp = &res.readdir res u. list;
while (d = readdir(dirp)) {

nl->name = malloc(strlen(d->d name)+l);
strcpy(nl->name, d->d_name); -
nlp = &nl->next;

}
*nlp NULL;

/*
* Return the result
*/

res.errno = 0;
closedir(dirp) ;
return (&res);

XDR Routine File
The rls_xdr.c file is created from the rls.x file by RPCGEN. This file manages
the details of the XDR translation of requests and results. This file uses the
definitions of the data structures in the .x file to produce functions which do
the proper XDR translations. If there are data types in the.x file that you
have not defined, the XDR routines for those data types will not be found in
the rls _ xdr.c file. RPCGEN will not object to having undefined data types.
You must produce the translation functions for these data types.

4-20 Generating XDR Routines

EXAMPLE:

'include <rpc/rpc.h>
'include "rls.h"

boo 1 t
xdr_nametype(xdrs, objp)

XDR *xdrs;
nametype *objp;

{
if (lxdr_string(xdrs, objp, MAXNAMELEN» {

return (FALSE);
}
return (TRUE);

}

boo 1 t
xdr namelist(xdrs, objp)

- XDR *xdrs;
namelist *objp;

{

}

boo 1 t

if (lxdr_pointer(xdrs, (char **)objp, sizeof(struct namenode),
xdr namenode» {

return (FALSE);
}
return (TRUE);

xdr namenode(xdrs, objp)
- XDR *xdrs;

namenode *objp;
{

}

boo 1 t

if (lxdr_nametype(xdrs, &objp->name» {
return (FALSE);

}
if (lxdr namelist(xdrs, &objp->next» {

return (FALSE);
}
return (TRUE);

xdr ~eaddir res(xdrs, objp)
- XDR *xdrs;

readdir_res *objp;
{

if (lxdr int(xdrs, &objp->errno» {
return (FALSE);

}
switch (objp->errno) {
case 0:

if (!xdr_namelist(xdrs, &objp->readdir_res_u. list» {

RPCGEN Programming Guide 4-21

return(FALSE);
}
break;

}
ret urn (TRUE);

}

Compiling the Files
The last step is to compile and link all of the files. The following example
shows what to enter to compile and link everything, forming the client and
server programs that comprise the example remote directory read application:

EXAMPLE:

nodel%
nodel%
nodel%
nodel%
nodel%
nodel%
nodel%
nodel%

rpcgen -u rls.x
cc -c
cc -c
cc -c
cc -c
cc -c
cc -0

cc -0

rls_proc.c
rls svc.c
rls xdr.c
rls.c
rls clnt.c
rls_svc rls_proc.o rls_svc.o rls_xdr.o
rls rls.o rls clnt.o rls xdr.o

You can test the client program and the server procedure together as a single
program by linking them with each other rather than with the client and server
stubs. The procedure calls will be executed as ordinary local procedure calls
and you can debug the program with a local debugger such as xdh. When the
program is working, you can link the client program to the client stub
produced by RPCGEN, and you can link the server procedures to the server
stub produced by RPCGEN.

Note If you do this, you should comment out calls to the RPC
library routines and have client routines call server routines
directly.

4-22 Generating XDR Routines

The following illustration shows the entire RPCGEN process.

rls.x rls.h
rls.c rls clnt.c
rls_proc.c

rpcgen -u ~ rls-svc.c
rls.x rls - xdr.c

rls.c rls.o
rls clnt.c rls clnt.o

cc-c~ rls=svc.c ~ rls-svc.o
rls xdr.c rls-xdr.o
rls=proc.c rls=proc.o

rls.o
cc-~ rls_clnt.o ~ rls

rls xdr.o

rls svc.O
cc-~ rls=proc.o~ rls svc

The RPCGEN process

RPCGEN Programming Guide 4 - 23

RPCGEN Syntax
The syntax of the RPCGEN compiler is as follows:

rpcgen [-u] infile
rpcgen -c [-0 outfile] [infile]
rpcgen -h [-0 outfile] [infile]
rpcgen -1 [-0 outfile] [infile]
rpcgen -m [-0 outfile] [infile]
rpcgen -$ transport [-u] [-0 outfile] [infile]

Options

-c

-h

-/

-8 transport

Compile into XDR routines.

Compile into C data-definitions (a header file).

Compile into client-side stubs.

Compile into server-side stubs, using the given
transport. The supported transports are UDP
and TCP. This option may be invoked more
than once to compile a server that uses
multiple transports.

Note If RPCGEN is called without the -s option, the server-side
code that is generated will serve both UDP and TCP
transports.

-m

-u

Compile into server-side stubs, but do not
produce a main() routine. This option is useful
if you want to supply your own main().

Insert code into the server side .c stub file
which traps signals sent to the server program.

This signal code will cause the RPC server
program to unmap itself from the portmapper
on the server computer. If this is not done,
when the server receives a signal, it will stop

4 - 24 Generating XDR Routines

execution and leave the portmapper thinking
that it has that server program ready for
incoming requests. This can cause a misleading
error to be given on the client.

The signals SIGHUP, SIGINT, SIGQUIT, and
SIGTERM are trapped by the signal handler.
They are signals often sent to a program to
cause it to terminate execution. The signal
SIGKILL is not caught because it is not
possible to trap it. The (Ither available signals
are not trapped because they are not associated
with the concept of terminating a process.

Note The -u option can only be used when a server-side stub that
contains a main() program is produced. It can be used with
no other options given or with the -8 option. It cannot be
used when the -h, -c, -1, or -m options are present.

-0 outfile Specify the name of the output file. If none is
specified, standard output is used. This is usable
only with the -h, -c, -1, or -m options.

RPCGEN Programming Guide 4-25

Caution Nesting is not supported. As a work-around, structures can
be declared at the top-level, and their names used inside
other structures in order to achieve the same effect. Name
clashes can occur when using program definitions, since
the apparent scoping does not really apply. Most of these
can be avoided by using unique names for programs,
versions, procedures, and types.

The C Preprocessor
The C preprocessor is run on the input file before it is compiled, so all the
preprocessor directives are legal within .x files. Four symbols may be defined,
depending upon which output file is being generated. The symbols are:

::!::i!!:::::!§y - <::«:::::>< •• ~ U!:!::!::!::UH::!:! :::"::::'''':,>,. ..: •.• >
RPC HDR for header file output

RPC XDR for XDR routine output

RPC SVC for server skeleton output

RPC CLNT for client stub output

RPCGEN also does some preprocessing. Any line that begins with a percent
sign is passed directly into the output file, without any interpretation of the
line.

4-26 Generating XDR Routines

EXAMPLE The following example demonstrates the RPCGEN
preprocessing features.

/*
*time.x: Remote time protocol
*/

program TIMEPROG {
version TIMEVERS {

unsigned int TIMEGET(void) 1;
} = 1;

} = 44;

#ifdef RPC SVC
%int * /* This will only be added to */
%timeget 1() /* the _svc.c file */
%{ -
% static int thetime;
%
% thetime = time(O);
% return (&thetime):
%}
#endif

Note The '%' feature is not generally recommended as there is
no guarantee that the compiler will place the output where
you intended.

RPC Language
The RPC language is similar to C. If you know the C language, you will
understand RPC. This section describes the RPC language syntax, showing a
few examples along the way. This section also describes how the various RPC
and XDR type definitions are compiled into C type definitions in the output
header file.

RPCGEN Programming Guide 4-27

Definitions
An RPC language file consists of a series of definitions:

definition-list;
definition ";"
definition ";" definition-list

Specifically, the six types of definitions are as follows:

enum-definition
struct-definition
union-definition
typedef-definition
const-definition
program-definition

The first five definitions are used to define data representations and are
known as XDR definitions. The last definition is the RPC program definition.

Structures
An XDR structure (struet) in the RPC language is declared virtually the same
as its C counterpart.

EXAMPLE: Following is an example of an XDR structure:

struct-definition
"struct" struct-ident "{"

declaration-list
"}"

declaration-list:
declaration "." ,
declaration ";" declaration-list

4-28 RPC language

EXAMPLE:

struct coord {

int x;

int y;

} ;

The following example of an XDR structure defines a
two-dimensional coordinate and the C structure into which
it is compiled in the output header file.

struct coord{

int x;

int y;

};

typedef struct coord coord;

The output is identical to the input except for the added typedef at the end of
the output. This allows one to use "coord" instead of "struct coord" when
declaring items.

Unions
XDR unions are discriminated unions and look quite different from C unions.
They are more analogous to Pascal variant records than they are to C unions.

union-definition
"union" union-ident "switch" "("simple-declaration")" "{"

case-list
"}"

case-list
"case" value ":" declaration ";"
"default" ":" declaration ";"
"case" value "." declaration ";" case-list

RPCGEN Programming Guide 4-29

EXAMPLE: Following is an example of a type that might be
returned as the result of a "read data"
operation. If there is no error, a block of data is
returned; otherwise, nothing is returned:

union read result switch (int errno) {
case 0:

opaque data [1024] ;
default:

void;
} ;

After it is compiled, the union component of output structure has the same
name as the name type (except for the trailing _u):

struct read_result {
int errno;
union {

} ;

char data [1024] ;
} read_resu It_u;

typedef struct read_result read result;

Enumerations
XDR enumerations have the same syntax as C enumerations.

enum-definition:
"enum" enum-ident "{"

enum-value-list
"}"

enum-value-list;
enum-value
enum-value "," enum-value-list

enum-value
enum-value-ident
enum-value-ident "=,, value

4-30 RPC Language

EXAMPLE:

enum co lortype {

RED = 0,

GREEN = 1,

BLUE = 2

};

Typedef

The following example illustrates an XDR
enumeration and the C enumeration that
results after being compiled:

enum colortype {

RED = 0,

GREEN = 1,

BLUE = 2

};

typedef enum colortype colortype;

XDR typedefs have the same syntax as C typedefs.

typedef-definition

EXAMPLE:

"typedef" declaration

The following example defines a fname _type used for
declaring file name strings that have a maximum length of
255 characters.

typedef string fname_type<255>;--> typedef char *fname_type;

RPCGEN Programming Guide 4-31

Constants
XDR constants are symbolic constants that may be used wherever an integer
constant is used, for example, in array size specifications.

const-definition
"const" const-ident "=" integer

EXAMPLE:

The following example defines a constant DOZEN equal to 12.

const DOZEN = 12; --> 'define DOZEN 12

Programs
RPC programs are declared using the following syntax:

program-definition
"program" program-ident "{"

version-list
"}" "=" value

n ... ,
version-list:

version
version ".n , version-list

version:
"version" version-ident "{"

procedure-list
"}" "=" value

procedure-list:
procedure
procedure

procedure:

"." ,
"." , procedure-list

type-ident procedure-ident "(" type-ident ")" "=" value

4- 32 RPC Language

EXAMPLE: In the following example, we take another look
at time protocol:

/*
* time.x: Get or set the time. Time is represented as number of
* seconds since 0:00, January 1, 1970.
*/

program TIMEPROG {
version TIMEVERS {

unsigned int TIHEGET(void) = 1;
void TIMESET(unsigned) = 2;

} = 1;
} = 44;

This file compiles into #defines in the output header file:

#define TIMEPROG 44
#define TIMEVERS 1
#define TIMEGET 1
#define TIMESET 2

Declarations
In XDR, there are only four types of declarations:

declaration:
simple-declaration
fixed-array-declaration
variable-array-declaration
pointer-declaration

Simple Declarations
Simple XDR declarations are the same as simple C declarations.

simple-declaration
type-ident variable-ident

EXAMPLE:

colortype color; --> colortype color;

RPCGEN Programming Guide 4-33

Fixed-Length Array Declarations
XDR fIXed-length array declarations are the same as C array declarations:

fixed-array-declaration:
type-ident variable-ident "[" value "]"

EXAMPLE:

colortype palette[8]; --> colortype palette[8];

Variable-Length Array Declarations
Variable-length declarations have no explicit syntax in C, so XDR invents its
own using angle-brackets.

variable-array-declaration:
type-ident variable-ident "<" value ">"
type-ident variable-ident "<" ">"

The maximum size is specified between the angle brackets. The size may be
omitted, indicating that the array may be of any size.

int heights <12>;
int widths <>;

/* at most 12 items*/
/* any number of items */

Since variable-length arrays have no explicit syntax in C, these declarations are
actually compiled into stnlcts (structures). For example, the heights declaration
is compiled into the following stnlct:

struct {
u_int heights_len; /* # of items in array */
int *heights_val; /* pointer to array */

} heights;

Note The number of items in the array is stored in the _len
component and the pointer to the array is stored in the _val
component. The first part of each of these components'
names is the same as the name of the declared XDR
variable.

4-34 RPC Language

Pointer Declarations
Pointer declarations are made the same in XDR as they are in C. You cannot
use pointers over the network, but you can use XDR pointers for sending
recursive data types such as lists and trees.

pointer-declaration
type-ident "*" variable-ident

EXAMPLE:

listitem *next; --> listitem *next;

Special Cases
There are a few exceptions to the rules described above.

Booleans

C has no built-in boolean type. However, the RPC library includes a boolean
type called OOol_t that is either TRUE or FALSE. Things declared as type bool
in XDR language are compiled into bool_t in the output header file.

EXAMPLE:

bool married; --> bool_t married;

Strings

C has no built-in string type, but instead uses the null-terminated "char*"
convention. In XDR language, strings are declared using the "string" keyword,
and compiled into "char *"s in the output header file. The maximum size
contained in the angle brackets specifies the maximum number of characters
allowed in the strings (not counting the NULL characters). The maximum size
may be omitted, indicating a string of arbitrary length.

RPCGEN Programming Guide 4- 35

EXAMPLES:

string name<32>;
string longname < >;

Opaque Data

-> char *name;
-> char *longname;

Opaque data is used in RPC and XDR to describe untyped data, that is,
sequences of arbitrary bytes. It may be declared either as a fIXed or variable
length array.

EXAMPLES:

Voids

opaque diskblock[512];
opaque filedata <1024>;

> char diskblock[512];
> struct {

u int filedata len;
char *filedata-val;

} filedata; -

In a void declaration, the variable is not named. The declaration is just void
and nothing else. Void declarations can only occur in two places:

• union definitions

• program definitions (as the argument or result of a remote procedure)

4-36 RPe Language

RPCGEN Error Messages

Command Line Error Messages

usage: rpcgen [-u] infile
rpcgen [-c I -h I -1 I -m I -u] [-0 outfi7e] [infi7e]
rpcgen [-s udp I tcp]* [-0 outfi7e] [infj7e]

Cause: This message is given if the wrong number of arguments, the wrong
arguments, or the wrong options are given when executing RPCGEN.

RPCGEN Execution Error Messages
RPCGEN: output would overwrite <input_fi7e>

Cause: If the name of the input file and the name specified for the output file
are the same, RPCGEN will print this message and quit. The name of the
input file will be substituted for <input Jzle> in the message.

rpcgen: unable to open <output_fi7e>: <perror
message>

Cause: If RPCGEN is unable to open the output file, the message listed
above appears. Possible causes are many, such as not having write permission
to the parent directory. This is why the perror message is printed. It gives a
text message for the errno that resulted during the attempt to open the file.
The name of the output file will be substituted for <outputJiIe> in the
message.

RPCGEN Programming Guide 4- 37

rpcgen: No more processes

Cause: RPCGEN will try to execute the C preprocessor. If it cannot do this, it
will print a pen-orO message stating what the problem was. The text message is
based on the value in elTllo.

rpcgen: RPCGEN has too many files open

Cause: If RPCGEN opens too many files at once, this error message appears.
Since RPCGEN only has a few files open at anyone time, the message would
appear if RPCGEN is executed from a process that had almost the maximum
number of files already open.

Parsing Error Messages
The next group of error messages is produced because of an error detected in
the contents of the .x file. They are similar to having compilation errors in a C
program and as such are very context dependent. The general rule of thumb is
that either RPCGEN could not recognize any of the input it is given, or it was
able to start parsing a legal construction, but ran into a symbol that did not
match what it expected. Because some of the messages are rather long, some
have been placed on two lines in order to fit within the margin. In reality, they
will be printed on one line. In addition to an error message, the line that
contains the error is printed with the part of the line that caused the problem
underscored with "A A A" characters.

<beginning of the line><error> <rest of the line>
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<input_file>, line <line number>: <error message>

EXAMPLE:

If the following line appeared in a .x file:

canst ducks "mallard"

4-38 RPCGEN Error Messages

This is what the error message would look like:

const ducks "mallard"
AAAAAAAAAAAAAAAAAAAA

err.x, line 5: expected '='

Expecting a Keyword

<input_file>, line <line_number>: definition key word
expected.

Cause: RPCGEN was expecting the start of a legal construction such as a
struct declaration and it encountered a token from the input file that did not
match one of the legal keywords (stlUct, union, typedef, enum,program, or
const).

Array of Pointers

<input_file>, line <line_number>:
no array-of-pointer declarations use typedef

Cause: You tried to declare an array of pointers.

The next example shows how an array of pointers can be declared. If you wish
to refer to an array of pointers, use typedefto do so (as in the GOOD line
shown in the following example).

RPCGEN Programming Guide 4-39

EXAMPLE:

typedef struct z *zptr;

struct z {

} ;

int a;
zptr t[2];
struct z *y[2];
struct z *y<2>;

Bad Union

/* GOOD LINE */
/* BAD LINE '1 */
/* BAD LINE '2 */

When declaring a union, do not use an array in the switching variable (as
shown in the following example).

EXAMPLE:

union xxx switch (int the_array[2]) { /* File bad union.x */
case 0:

int a;
defau It:

void;
}

If you do, the following message will be displayed:

bad_union.x, line 1: only simple declaration allowed
in switch

Opaque Declarations

<input_file>, line <line_number>: array declaration
expected

Cause: Data object incorrectly declared.

If you want to declare a data object to be opaque, declare it as an array.

4-40 RPCGEN Error Messages

EXAMPLE:

The following example shows a correct and incorrect method of using the
opaque declaration:

opaque group_of_bytes[777]; /* CORRECT */
opaque bad_declaration; /* INCORRECT */

String Declaration Error

<input_file>, line <line_number>:
variable-length array declaration expected

A string must be declared using left and right angle braces (" <" and "> ").

EXAMPLE:

The following example shows a correct and incorrect method of using the
string declaration:

string first_name<50>;
string last_name 50;

Void Declarations

/* CORRECT */
/* INCORRECT */

<input_file>, line <line number>:
voids allowed only inside union and program
definitions

Cause: A void declaration used improperly.

The input language for RPCGEN has the concept of void declaration. This
can be used only as a declaration for a variant in a union or as the argument
or result of a remote procedure.

RPCGEN Programming Guide 4-41

EXAMPLE:

The following example shows a correct and incorrect method of using the void
declarations:

void TIMESET(unassigned) = 2;
void bad_var;

Unknown Types

/* CORRECT */
/* INCORRECT */

<input_fi1e>, line <1ine number>: expected type
specifier

Cause: An attempt was made to declare a variable to be something RPCGEN
does not understand.

EXAMPLE:

In the following example, the line with the comment of OK will not produce
the "expected type specifier" message. This is because even though "flawid" is
not a normally defined type specifier, it is simply a legal identifier and is the
name of an unknown data type. RPCGEN assumes that the you will provide
the appropriate definition and XDR routines for "flawid" data type in other
files that will make up the client and selVer programs. The line with the
comment of NOT OK will produce the "expected type specifier" message. This
is because the" =" is not a legal value for a type specifier.

struct namenode {
flawid a_var; /* OK */
= wont_work; /* NOT OK */

} ;

Illegal Characters

<input_file>, line <1ine number>: illegal character
in file:

Cause: An illegal character, such as "1", in the input file.

4-42 RPCGEN Error Messages

Missing Quotes

<input_file>, line <line number>: unterminated
string constant

Cause: A string constant is missing the terminating double quote.

General Syntax Errors
Other RPCGEN error messages that you might encounter are parsing errors
that are context dependent. As these error messages are dependent on the
type of construct being parsed, all of the possible messages and examples of
what could cause them cannot be listed here.

RPCGEN Programming Guide 4-43

4-44

XDR Protocol Specification

The RPC (Remote Procedure Call) package uses XDR (eXternal Data
Representation) conventions for transmitting data. XDR works across
different programming languages, operating systems, and node architectures.

5

This chapter explains library routines that allow you to describe arbitrary data
structures in a machine-independent manner. It describes:

• XDR library routines

• a guide to accessing currently available XDR streams

• information on defining new streams and data types

• a formal definition of the XDR standard

XDR Protocol Specification 5 - 1

Note C programs using XDR routines must include the
<rpc/rpc.h> file containing all the necessary interfaces to
the XDR system. Since the C library libc.a contains all the
XDR routines, compile programs as usual.

% cc program. c

Justification
The following two programs (Writer and Reader) appear to be portable
because they

• pass lint checking and

• exhibit the same behavior when executed locally on two different hardware
architectures: an HP 9000 running HP-UX and a DEC VAX computer
runninp the Berkeley Standard Distribution (BSD 4.2 or later) version of
UNIX operating system.

(1) UNIX (R) is a U.S. registered trademark of AT&T in the U.S.A. and other countries.

5-2

Writer Program

'include <stdio.h>

main(
{

}

/* writer.c */

long i;

for (i 0; i < 8; i++) {

}

if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1) {

}

fprintf(stderr, "fai1ed!\"");
exit(I);

Reader Program

#inc1ude <stdio.h>

main(
{

}

/* reader.c */

10ngi,j;

for (j = 0; j < 8; j ++) {
if (fread((char *)&i, sizeof (i), 1, stdin) != 1) {

fprintf(stderr, "fai 1ed!\n");
exit(1);

}
printf("%ld ", i);

}
printf("\n");

XDR Protocol Spec~flcation 5 - 3

With the advent of local area networks and the 4.2 BSD UNIX 1 operating
system came the concept of network pipes: a process produces data on one
node and a second process consumes data on another node.

Piping the output of the Writer program to the Reader program gives
identical results on an HP computer running the HP-UX operating system or
a DEC VAX computer running 4.2 BSD.

hp% writer I reader
o 1 234 567
hp%

vax% writer I reader
o 1 234 567
vax%

EXAMPLE: You can construct a network pipe with Writer and Reader
programs. This example shows the results if the first process
produces data on an HP computer and the second process
consumes data on a DEC VAX computer.

5-4

hp% writer I remsh vax reader
o 16777216 33554432 50331648 67108864 83886080 100663296 117440512
hp%

You can obtain similar results by executing Writer on a
DEC VAX computer running 4.2 BSD and Reader on an
HP computer. These results occur because the byte ordering
of long integers differs between the DEC VAX computer
running 4.2 BSD and the HP computer running HP-UX
even though word size is the same. Note, 16777216 is 224;
when 4 bytes are reversed, the 1 is in the 24th bit.

Whenever two or more machine types share data, the data format must
be portable. You can make this program data-portable by replacing the read()
and writer) calls with calls to an XDR library routine xdr _long(). This filter
knows the standard representation of a long integer in its external form.

EXAMPLE: Revised versions of Writer and Reader Programs

Writer Program

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

main(/* writer.c */
{

}

XDR xdrs;
long i;

xdrstdio create(&xdrs, stdout, XDR ENCODE);
for (i = -0; i < 8; i ++) { -

}

if (!xdr long(&xdrs, &i» {
f~rintf(stderr, "failed!\n");
exit(l);

}

XDR Protocol Specification 5 - 5

Reader Program

5-6

'include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

maine /* reader.c */
{

}

XDR xdrs;
longi,j;

xdrstdio create(&xdrs, stdin, XDR_DECODE);
for (j = -0; j < 8; j ++) {

if (!xdr long(&xdrs, &i)) {
fprintf(stderr, "fai led! \n");
exit(1) ;

}
printf("%ld It, i);

}
printf("\n");

The new programs are executed on an HP computer, on a DEC VAX
computer running 4.2 BSD, and from an HP to a DEC VAX computer
running 4.2 BSD. The following sample shows the results.

hp% writer I reader
o 1 234 567
hp%

vax% writer I reader
o 1 234 567
vax%

hp% writer I remsh vax reader
o 1 234 567
hp%

Arbitrary data structures present portability problems, particularly with respect
to alignment and pointers. Alignment on word boundaries may cause the size
of a structure to vary from system to system. Pointers are convenient to use,
but have no meaning outside the process where they are defined.

XDR Library
The XDR library solves data portability problems. It allows you to write and
read arbitrary C constructs in a consistent and specific manner. Thus, the
XDR library is useful even if not sharing data among network nodes.

The XDR library has filter routines for strings (null-terminated arrays of
bytes), structures, unions, and arrays. Using more primitive routines, you can
write specific XDR routines to describe arbitrary data structures, including
elements of arrays, arms (members) of unions, or objects pointed at from
other structures.

XDR Protocol Specification 5 - 7

These structures may contain arrays of arbitrary elements or pointers to other
structures.

In a family of XDR stream creation routines each member treats the stream
of bits differently. In this case, data is manipulated using standard I/O
routines, so we use xdrstdio _create (). The parameters to XDR stream creation
routines vary according to their function. For example, xdrstdio _create() takes
a pointer to an XDR structure that it initializes, a pointer to a FILE that the
input or output is performed on, and the operation. The operation may be
XDR_ENCODE for serializing in the Writer program, or XDR_DECODE for
deserializing in the Reader program.

Note If using standard RPC library routines, you will not need to
create your own XDR streams since the RPC system
creates them. The streams created by RPC are then passed
to the programs.

The xdr _long() primitive is characteristic of most XDR library primitives and
client XDR routines.

• The routine returns TRUE (1) ifit succeeds and FALSE (0) if it fails.

• For each data type, xxx, there is an associated XDR routine of the following
form.

5-8

boo 1 t
xdr_xxx(xdrs, fp)

XDR *xdrs;
xxx *fp;

{
}

In this casexn: is long so the corresponding XDR routine is the primitive
xdr _long. The client could also define an arbitrary structure.ox. If it did so it
would also supply the routinexdr_xxx describing each field by calling XDR
routines of the appropriate type. You can treat the first parameter xdrs , as
an opaque handle and pass it to the primitive routines. (An opaque handle
is an object given to you from a lower level routine that you do not use
directly, but rather pass it along elsewhere.)

XDR routines are direction independent; the same routines can serialize or
deserialize data. This feature is critical to software engineering of portable
data. You can call the same routine for either operation. (This process helps
ensure serialized data can also be deserialized.) Both producer and consumer
of networked data can use one routine. This is implemented by always passing
the address of an object rather than the object; only in the case of
deserialization is the object modified. The value of this feature becomes
obvious when nontrivial data structures are passed among nodes. If needed,
you can obtain the direction of the XDR operation.

EXAMPLE:

Assume the following items.

• A person's gross assets and liabilities are to be exchanged among
processes.

• These values are important enough to warrant their own data type.
struct gnumbers {

long g_assets;
long 9_'iabi1ities;

};

XDR Protocol Specification 5 - 9

• The corresponding XDR routine describing this structure would be
as follows.

bool t /* TRUE is success,FALSE is failure*/
xdr_gnumbers(xdrs, gp)

{

}

XDR *xdrs;
struct gnumbers *gp;

if (xdr_long(xdrs ,&gp->g_assets)&&
xdr_long(xdrs, &gp->g_liabilities))

return(TRUE) ;
return(FALSE) ;

Note, the parameter xdrs is never inspected or modified; it is only passed to
the subcomponent routines. You must inspect the return value of each XDR
routine call; immediately quit and return FALSE if the subroutine fails.

The above example also shows the type bool_t is an integer whose only values
are TRUE (1) and FALSE (D). This document uses the following definitions.

5-10

#define bool tint
#define TRUE- 1
#define FALSE 0

'define enum_t int /* enum_t used for generic enums */

Keeping these conventions in mind, you can rewrite xdr .Ptumbers() as
follows.

boo 1 t
xdr gnumbers(xdrs. gp)

- XDR *xdrs;
struct gnumbers *gp;

{
return(xdr_long(xdrs. &gp->g_assets) &&

xdr_long(xdrs. &gp->g_liabilities));
}

This document uses both coding styles.

XDR Protocol Specification 5-11

XDR Library Primitives
This section gives a synopsis of each XDR primitive. It explains basic data
types, constructed data types, and XDR utilities. The interface to these
primitives and utilities is defined in the include file <rpc/xdr.h> that is
automatically included by <rpc/rpc.h >.

Number Filters
The XDR library provides primitives to translate between numbers
and their corresponding external representations. Primitives cover the
following set of numbers.

[signed, unsigned] x [short, int, long]

Specifically, the six primitives are as follows.

boo 1 t
xdr_1nt(xdrs. ip)

XDR *xdrs;
int *ip;

boo 1 t
xdr_long(xdrs. lip)

XDR *xdrs;
long *lip;

boo 1 t
xdr_;hort(xdrs. sip)

XDR *xdrs;
short *sip;

boo 1 t
xdr u int(xdrs. up)

- - XDR *xdrs;
unsigned int *up;

boo 1 t
xdr u long(xdrs. lup)

- - XDR *xdrs;
u_long *lup;

boo 1 t
xdr u short(xdrs. sup)

- - XDR *xdrs;
u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter is
the address of the number that provides data to the stream or receives data
from it. All routines return TRUE if they complete successfully or FALSE if
they do not.

5 -12 XDR Ubrary Primitives

Floating Point Filters
The XDR library also provides primitive routines for C's floating point types.

boo 1 t
xdr_float(xdrs. fp)

XDR *xdrs;
float *fp;

boo 1 t
xd~_double(xdrs. dp)

XDR *xdrs;
double *dp;

The first parameter, xdrs, is an XDR stream handle. The second parameter is
the address of the floating point number that provides data to the stream or
receives data from it. All routines return TRUE if they complete successfully
or FALSE if they do not.

Note The numbers are represented in ANSI-IEEE 754-19852

floating point. Therefore, routines may fail when decoding
a valid ANSI-IEEE 754-1985 representation into a
machine-specific representation that is not ANSI-IEEE
754-1985, or vice versa.

Enumeration Filters
The XDR library provides a primitive for generic enumerations. This primitive
assumes a C enum has the same representation inside the node as a C integer.

The boolean type is an important instance of the enum. The external
representation of a boolean is always 1 (one) if TRUE or 0 (zero) if FALSE.

(2) ANSI-IEEE 754-1985 is a floating point standard that is accepted by the American
National Standards Institute and the Institute of Electrical and Electronic Engineers.

XDR Protocol Specification 5 -13

EXAMPLE

#define bool_t int
#define FALSE 0
#define TRUE 1

#define enum_t int

boo 1 t
xdr ;num(xdrs, ep)
XDR- *xdrs;
enum_t *ep;

boo 1 t
xdr bool(xdrs, bp)
XDR- *xdrs;
bool_t *bp;

The second parameters ep and bp are addresses of the associated type that
provides data to the xdrs stream or receives data from it. The routines return
TRUE if they complete successfully or FALSE if they do not.

No Data
Use the following function if an XDR routine must be supplied to an RPC
routine even though no data is passed or required.

boo 1 t
xdr_void(); /* always returns TRUE */

Constructed Data Type Filters
This section includes primitives for strings, arrays, unions, and pointers to
structures. These constructed or compound data type primitives require more
parameters and perform more complicated functions than the basic data type
primitives previously discussed.

5 - 14 XDR Library PrimHives

The three XDR directional operations areXDR_ENCODE,XDR_DECODE,
and XDR _FREE. Constructed data type primitives can use memory
management. In many cases, memory is allocated when deserializing data with
XDR_DECODE. Therefore, the XDR package must provide a means to
deallocate memory. The XDR_FREE operation performs this de allocation.

Strings
In C, a string is a sequence of bytes terminated by a null byte. However, when
a string is passed or manipulated, a pointer to it is employed. Therefore, the
XDR library defines a string to be a char *, not a sequence of characters.

The external representation of a string is very different from its internal
representation. Externally, strings are sequences of ASCII characters;
internally, they are character pointers. The routine Xlir _string() converts the
two representations.

boo 1 t
xdr_string(xdrs. sp. maxlength)

XDR *xdrs;
char **sp;
u_int maxlength;

The first parameter, Xlirs, is the XDR stream handle. The second parameter,
sp, is a pointer to a string (type char **). The third parameter, maxlength,
specifies the maximum number of bytes allowed during encoding or decoding;
its value is usually specified by a protocol. For example, a protocol
specification may say a file name cannot be longer than 255 characters. The
routine returns FALSE if the number of characters exceeds maxlength or if
any other error occurs; it returns TRUE otherwise.

The behavior of xdr _string() is similar to the behavior of other routines
discussed in this section. The direction XDR ENCODE is easiest to
understand. The parameter sp points to a stnng of a certain length; if it does
not exceed maxlength, the bytes are serialized.

XDR Protocol Specification 5 -15

The effect of deserializing a string is subtle.

• First the length of the incoming string is determined; it must not exceed
maxlength.

• Next, sp is dereferenced; if the value is NULL, a contiguous set of bytes of
the appropriate length is allocated and *sp is set to this string. If the original
value of *sp is non-null, the XDR package assumes a target area was
allocated that can hold strings no longer than maxlength.

• In either case, the string is decoded into the target area. The routine then
appends a null character to the string.

In the XDR _FREE operation, the string is obtained by dereferencing sp. If the
string is not NULL, it is freed and *sp is set to NULL. In this operation,
xdr _string ignores the maxlength parameter.

Byte Arrays
Often variable-length arrays of bytes are preferable to strings. Byte arrays
differ from strings in the following three ways.

• The length of the array (the byte count) is explicitly located in an unsigned
integer.

• The byte sequence is not terminated by a null character.

• The external representation of the bytes is the same as their internal
representation. The primitivexdr _bytes() converts between the internal
and external representations of byte arrays.

boo 1 t
xdr_bytes(xdrs. bpp. lp. maxlength)

XDR *xdrs;
char **bpp;
u_int *lp;
u_int maxlength;

5 - 16 XDR Ubrary Primitives

The usage of the first, second, and fourth parameters are identical to the first,
second, and third parameters of xdr _string(), respectively. The length of the
byte area is obtained by dereferencing lp when serializing; *lp is set to the byte
length when deserializing.

Arrays
The XDR library package provides a primitive for handling arrays of
arbitrary elements. The xdr _bytes() routine treats a subset of generic arrays in
which the size of array elements is one byte and the external description of
each element is built-in. The generic array primitive, xdr _ array(),
requires parameters identical to those of xdr _bytes() plus two more: the size
of array elements and an XDR routine to handle each of the elements. Call
this routine to encode or decode arrays.

boo 1 t
xdr array(xdrs. apr lp. maxlength. elementsiz. xdr_element)

- XDR *xdrs;
char **ap;
u_int *lp;
u_int maxlength;
u int elementsiz;
b~ol_t (*xdr_element)();

The parameter ap is the address of the pointer to the array. If *ap is NULL
when the array is being deserialized, XDR allocates an array of the
appropriate size and sets *ap to that array. The element count of the array is
obtained from *lp when the array is serialized; *lp is set to the array length
when the array is deserialized. The parameter maxlength is the maximum
number of elements the array is allowed to have; elementsiz is the byte size of
each element of the array. (You can use the C function sizeof() to obtain this
value.) The xdr _ array() function calls the xdr _element() routine to serialize,
deserialize, or free each element of the array.

XDR Protocol Specification 5 -17

EXAMPLES

Example A Identify a user on a networked node by the:

• host name, such as krypton (see gethostname(3)),

• user's UID (see geteuid (2))

• group numbers to which the user belongs
(see getgroups (2)).

A structure with this information and its associated XDR
routine could be coded as follows.

struct net user {
char *nu_machinename;
int nu uid;
u_int nu-="glen;
int *nu_gids;

} ;
#define NLEN 255
#define NGRPS 20

/* machine names < 256 chars */
/* user cannot be in > 20 groups */

boo 1 t
xdr ~etuser(xdrs, nup)

- XDR *xdrs;

{

}

struct netuser *nup;

return(xdr_string(xdrs, &nup->nu_machinename, NLEN) &&
xdr_int(xdrs, &nup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen, NGRPS,

sizeof (int), xdr_int»;

5 -18 XDR Library Primitives

Example B Identify a party of network users as an array of netuser
structures. The declaration and its associated XDR routines
are as follows.

struct party {
u_int p_len;
struct net user *p_nusers;

} ;
Idefine PLEN 500 /* max number of users in a party */

boo 1 t
xdr_party(xdrs, pp)

XDR *xdrs;
struct party *pp;

{
return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,

sizeof (struct netuser), xdr_netuser));
}

XDR Protocol Specification 5 - 19

Example C You can combine the well-known parameters to main ()
(argc and argv) into a structure. An array of these structures
can make up a history of commands. The declarations and
XDR routines might look like the following code.

struct cmd {

} ;

u_int c_argc;
c ha r **c_a rgv;

Idefine ALEN 1000 /* args cannot be > 1000 chars */
Idefine NARGC 100 /* commands cannot have> 100 args */

struct history {
u int h len;
struct cmd *h cmds;

} ;
Idefine NCMDS 75 /* history is no more than 75 commands */

boo 1 t
xdr_wrap_string(xdrs, sp)

XDR *xdrs;

{

}

boo 1 t

char **sp;

return(xdr_string(xdrs, sp, ALEN));

xdr_cmd(xdrs, cp)

}

XDR *xdrs;
struct cmd *cp;

return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,
sizeof (char *), xdr_wrap_string));

5 - 20 XDR Library Primitives

boo 1 t
xdr_history(xdrs, hpJ

XDR *xdrs;
struct history *hp;

{
return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,

sizeof (struct cmd), xdr_cmd));
}

The xdr _ an-ay() function can only pass two arguments to the array element
description routine, but the xdr _string() routine requires three arguments.
The xdr _wrap _string() function requires only two arguments and provides the
third argument to xdr _string().

Opaque Data
In some protocols, the selVer passes a handle to the client, and the client later
passes the handle back to the selVer. Handles are opaque and never inspected
by clients; they are obtained and submitted. Use the primitive xdr _opaque ()
for describing fIXed sized, opaque bytes.

boo 1 t
xdr_opaque(xdrs, p, len)

XDR *xdrs;
char *p;
u_int len;

The parameter p is the location of the bytes; len is the number of bytes in the
opaque object. The actual data contained in the opaque object are system
dependent.

Fixed Sized Arrays

The XDR library does not provide a primitive for fIXed-length arrays. (The
primitive xdr _ array() is for varying-length arrays.)

XDR Protocol Specification 5 - 21

EXAMPLE: You could rewrite the previous Example A to use
fIXed-sized arrays in the following manner.

Idefine NLEN 255 /* machine names must be < 256 chars */
Idefine NGRPS 20 /* user cannot belong to > 20 groups */

struct net user {

} ;

boo 1 t

char *nu_machinename;
int nu uid;
int nu=gids [NGRPS];

xdr ~etuser(xdrs, nup)
- XDR *xdrs;

}

struct netuser *nup;

i nt i;

if (!xdr string(xdrs, &nup->nu machinename, NLEN»
return(FALSE); -

if (!xdr int(xdrs, &nup->nu uid»
return(FALSE); -

for (i = 0; i < N GR P S; i ++) {
if (!xdr int(xdrs, &nup->nu gids[i]»

return(FALSE); -
}
return(TRUE);

5 - 22 XDR Library Primitives

Discriminated Unions
The XDR library supports discriminated unions. A discriminated union is a C
union and an enum t value that selects a member of the union.

struct xdr discrim {
enum t value;
bool=t (*proc)();

} ;

boo 1 t
xdr_union(xdrs, dscmp, unp, arms, defaultarm)

XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr discrim *arms;
bool_t (*defaultarm) (); /* may equa 1 NULL */

First, the routine translates the discriminant of the union located at *dscmp.
The discriminant is always an enum _to Next, the union located at *unp is
translated. The parameter arms is a pointer to an array of xdr _ discrim
structures. Each structure contains an order pair of [value,proc}. If the union's
discriminant is equal to the associated value, the proc is called to translate the
union.

The end of the xdr _ discrim structure array is denoted by a routine of
value NULL (0). If the discriminant is not found in the arms array, the
defaultarm procedure is called if it is not null; otherwise, the routine returns
FALSE.

XDR Protocol Specification 5 - 23

EXAMPLE: Assume the type of a union may be integer, character
pointer (a string), or a gnumbers structure. Also, assume the
union and its current type are declared in a structure.

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {

} ;

enum utype utype; /* the union's discriminant */
union {

} uval;

int ival;
char *pval;
struct gnumbers gn;

The following structure and XDR procedure serialize or
deserialize the discriminated union.

struct xdr discrim u tag arms[4] = {
{ INTEGER, xdr int},
{ GNUMBERS, xdr gnumbers }

}

{ STRING, xdr_wrap_string },
{ dontcare ,NULL}
/*-always terminate arms with a NULL xdr_proc */

boo 1 t
xdr_~_tag(xdrs, utp)

XDR *xdrs;

{

}

struct u_tag *utp;

return(xdr_union(xdrs, &utp->utype, &utp->uval,
u_tag_arms, NULL));

5-24 XDR Library Primitives

The routine xdr ..xnumbers() was presented earlier; xdr _wrap _string() was
presented in the previous Example C. The default arm parameter to
xdr _union () (the last parameter) is NULL in this example. Therefore, the
value of the union's discriminant may legally take on the values listed in the
u _tag_arms array. This example also demonstrates that the elements of the
arm's array do not need to be sorted.

The values of the discriminant may be sparse, though in the above example
they are not. It is always good practice to assign explicitly integer values to
each element of the discriminant's type. This practice documents the external
representation of the discriminant and guarantees that different C compilers
emit identical discriminant values.

Pointers
In C it is often convenient to put pointers to another structure within
a structure. The primitive xdr Jeference() makes it easy to serialize,
deserialize, and free these referenced structures.

boo 1 t
xdr reference(xdrs, pp, size, proc}

- XDR *xdrs;
char **pp;
u_int ssize;
bool_t (*proc}();

Parameter pp is the address of the pointer to the structure; parameter ssize is
the size in bytes of the structure. (Use the C function sizeof() to obtain this
value.) The XDR routine proc describes the structure. When decoding data,
storage is allocated if *pp is NULL.

The primitive xdr _sttuct() does not need to describe structures within
structures since pointers are always sufficient.

XDR Protocol Specification 5 - 25

Note The xdr Jeference () and xdr _ an-ay() are not
interchangeable external representations of data.

EXAMPLE: Suppose a structure contains a person's name and a pointer
to a gnumbers structure contains the person's gross assets
and liabilities. The construct is as follows.

struct pgn {

} ;

boo 1 t

char *name;
struct gnumbers *gnp;

The corresponding XDR routine for this structure is as
follows.

xdr_pgn(xdrs. pp)

{

XDR *xdrs;
struct pgn *pp;

if (xdr_string(xdrs. &pp->name. NLEN) &&
xdr_reference(xdrs. &pp->gnp.
sizeof(struct gnumbers). xdr gnumbers))

return(TRUE); -
return(FALSE);

5-26 XDR Library Primitives

Pointer Semantics and XDR
In many applications, C programmers attach double meaning to the values of
a pointer. Typically the value NULL (or zero) means data is not needed, yet
some application-specific interpretation applies. The C programmer is
encoding a discriminated union efficiently by overloading the interpretation of
the value of a pointer. In the above example, a NULL pointer value for gnp
could indicate the person's assets and liabilities are unknown.

The pointer value encodes two things: whether or not the data is known and if
it is known, where it is located in memory. Linked lists are an example of the
use of application-specific pointer interpretation.

The primitive xdr _reference() cannot attach any special meaning to a
null-value pointer during serialization. Passing an address of a pointer whose
value is NULL to xdr Jeference() when serialing data may cause a memory
fault and, on UNIX 1 operating systems, a core dump for debugging.

You must expand non-dereferenceable pointers into their specific semantics.
This process usually involves describing data with a two-armed discriminated
union. One arm is used when the pointer is valid; the other is used when the
pointer is NULL.

XDR Protocol Specification 5-27

Non-filter Primitives
You can manipulate XDR streams with the primitives discussed in this
section.

u i nt
xdr_getpas(xdrs)

XDR *xdrs;

boo 1 t
xdr_setpos(xdrs, pos)

XDR *xdrs;
u_int pas;

boo 1 t
xdr destroy(xdrs)

- XDR *xdrs;

The routine xdr -Eetpos() returns an unsigned integer that describes the
current position in the data stream.

Note In some XDR streams, the returned value of xdr getpos() is
meaningless; the routine returns a (u_int) -1 in this case.

The routine xdr _setpos() sets a stream position to pos.

Note In some XDR streams, setting a position is impossible; in
such cases,xdr_setpos() returns FALSE.

5-28 XDR Library Primitives

This routine fails if the requested position is invalid (out of bounds). The
definition of bounds varies from stream to stream.

The xdr _ destroy() primitive destroys the XDR stream. Using the stream after
calling this routine is undefined.

XDR Operation Directions
You may wish to optimize XDR routines by taking advantage of the direction
of the operation: XDR_ENCODE, XDR_DECODE, or XDR_FREE. The
value xdrs- >x _op always contains the direction of the XDR operation. Though
you generally will not need this information, the field may be needed in some
circumstances.

XDR Protocol Specification 5 - 29

XDR Stream Access
Obtain an XDR stream by calling the appropriate creation routine. These
creation routines take arguments tailored to the specific properties of the
stream.

Streams currently exist for serialization and deserialization of data to or from
standard I/O FILE streams, TCP/IP connections, UNIX! operating system
files, and memory.

Standard I/O Streams
The routine xdrstdio _create () initializes an XDR stream, pointed to by xdrs
using the standard I/O library routines. The fp parameter is an open file, and
X_OP is an XDR direction.

#include <stdio.h>
#include <rpc/rpc.h> /* xdr streams part of rpc */

void
xdrstdio create(xdrs, fp, x_op)

XDR *xdrs;
FILE *fp;
enum xdr_op x_op;

5 - 30 XDR Stream Access

Memory Streams
Memory streams allow the streaming of data into or out of a specified area of
memory.

#include <rpc/rpc.h>

void
xdrmem create(xdrs, addr, len, x_op)

-XDR *xdrs;
char *addr;
u_int len;
enum xdr_op x_op;

The routine xdnnem_create() initializes an XDR stream in local memory. The
addr parameter points to the memory; the len parameter is the length in bytes
of the memory. The parameters xdrs and x_op are identical to the
corresponding parameters of xdrstdio _create. Currently, the UDP/IP
implementation of RPC uses xdrmem _create. Complete call or result messages
are built in memory before calling the sendto() system routine.

Record (TCP/IP) Streams
A record stream is an XDR stream built on top of a record marking
standard that is built on top of the UNIX 1 operating system file or 4.2 BSD
connection interface.

#include <rpc/rpc.h> /* xdr streams part of rpc */

void
xdrrec_create(xdrs, sendsize, recvsize, iohandle, readproc, writeproc)

XDR *xdrs;
u_int sendsize, recvsize;
char *iohandle;
int (*readproc)(), (*writeproc)();

XDR Protocol Specification 5 - 31

The routine xdn-ec _create () provides an XDR stream interface that allows for
a bidirectional, arbitrarily long sequence of records. The contents of the
records should be data in XDR form. The stream's primary use is for
interfacing RPC to TCP connections. However, you can use it to stream data
into or out of normal UNIX 1 operating system files.

The parameter xdrs is similar to the corresponding parameter of
xdrstdio _create (). The stream performs its own data buffering similar to that
of standard I/O. The parameters sendsize and recvsize determine the size in
bytes of the output and input buffers, respectively. If their values
are zero (0), then predetermined defaults are used. When a buffer needs to be
filled or flushed, the routine readproc() or writeproc() is called, respectively.
The usage and behavior of these routines are similar to the UNIX 1 system
calls read() and write (). However, the first parameter to each of these
routines is the opaque parameter iohandle. The other two parameters but and
nbytes and the results (byte count) are identical to the system routines. If xu is
readproc or writeproc, then it has the following form.

/*
* returns the actual number of bytes transferred.
* -1 is an error
*/

int
xxx(iohandle. buff nbytes)

char *iohandle;
char *buf;
int nbytes;

5 - 32 XDR Stream Access

The XDR stream provides a means for delimiting records in the byte stream.
Refer to the "Synopsis of XDR Routines" section for implementation details
of delimiting records in a stream. The primitives specific to record streams are
as follows.

bool t
xdrrec endofrecord(xdrs. flushnow)

XOR *xdrs;
boo l_t flushnow;

bool t
xdrrec_skiprecord(xdrs)

XOR *xdrs;

bool t
xdrrec eof(xdrs)

XOR *xdrs;

The routine xdrrec _endofrecord()
causes the current outgoing data to
be marked as a record. If the
parameter Jlushnow is TRUE, the
stream's writeproc() is called;
otherwise, writeproc() is called when
the output buffer is filled.

The routine xdrrec _skiprecord ()
causes an input stream's position to
be moved past the current record
boundary and onto the beginning of
the next record in the stream.

If there is no more data in the
stream's input buffer, the routine
xdrrec _eof() returns TRUE. Note,
this condition does not imply there is
no more data in the underlying file
descriptor.

XDR Protocol Specification 5 - 33

XDR Stream Implementation
This section provides the abstract data types needed to implement new
instances of XDR streams.

XDR Object
The following structure defines the interface to an XDR stream.

enum xdr_op { XDR_ENCODE=O, XDR_DECODE=l, XDR_FREE=2 };

typedef struct {
enum xdr_op x_op;
struct xdr_ops {

/* operation; fast added param */

} XDR;

boo1 t (*x get1ong)();
bool-t (*x-putlong)();
boo1-t (*x-getbytes)();
boo1-t (*x-putbytes)();
u_int (*x=getpostn)();
boo1_t (*x_setpostn)();
caddr t(*x in1ine)();
VOID - (*x-destroy)();

} *x_ops; -
caddr_t x_public;
caddr_t x_private;
caddr t x base;
i nt x_ha;dy;

/* get long from stream */
/* put long to stream */
/* get bytes from stream */
/* put bytes to stream */
/* return stream offset */
/* reposition offset */
/* ptr to buffered data */
/* free private area */

/* users' data */
/* pointer to private data *,
/* private for position info
/* extra private word */

The x _op field is the current operation being performed on the stream. This
field is important to the XDR primitives, but should not affect a stream's
implementation. A stream's implementation should not depend on this value.
The fields xyrivate, x_base, and x_handy are private to the particular stream's
implementation. The field xyublic is for the XDR client and should never be
used by the XDR stream implementations or the XDR primitives.

5 - 34 XDR Stream Implementation

The operation x _ inline() takes two parameters: an XDR * and an unsigned
integer that is a byte count. The routine returns a pointer to a piece of the
stream's internal buffer. The caller can then use the buffer segment for any
purpose. From the stream's point of view, the bytes in the buffer segment
were consumed or put. The routine may return NULL if it cannot return a
buffer segment of the requested size. (The x_inline() routine is for directly
accessing the underlying buffer. Use of the resulting buffer is not
data-portable; therefore, we recommend you do not use this feature.)

The operations x ..,getbytes() and x JJutbytes() blindly obtain and put
sequences of bytes from or to the underlying stream; they return TRUE if
they are successful or FALSE if they are not. The routines have identical
parameters.

EXAMPLE:

boo 1 t
x_getbytes(xdrs, buf, bytecount)

XDR *xdrs;
char *buf;
u_int bytecount;

The operations x ..,getlong() and x JJutlong() receive and put long numbers
from and to the data stream. These routines translate the numbers between
the node representation and the (standard) external representation. The
UNIX1 operating system primitives htonl() and ntohl() can be helpful in
accomplishing this translation. The higher-level XDR implementation assumes

• signed and unsigned long integers contain the same number of bits and

• non-negative integers have the same bit representations as unsigned
integers.

XDR Protocol Specification 5 - 35

The routines return TRUE if they succeed or FALSE if they do not; they have
identical parameters.

EXAMPLE:

boo 1 t
x_putlong(xdrs. lp}

XDR *xdrs;
long *lp;

5 - 36 XDR Stream Implementation

XDR Standard
The XDR standard is independent of languages, operating systems, and
hardware architectures. Once data is shared among nodes, it should not matter
if the data was produced on an HP computer and consumed by another
vendor's computer, or vice versa. Similarly, the choice of operating systems
should have no influence on how the data is represented externally. For
programming languages, data produced by a C program should be readable by
a Fortran or Pascal program.

The XDR standard depends on the assumption that bytes (or octets) are
portable. (A byte is eight bits of data.) Hardware that encodes bytes onto
various media should preserve the bytes' meanings across hardware
boundaries. Both HP and DEC VAX computer hardware implementations
adhere to the standard.

The XDR standard also suggests a language used to describe data. The
language is a "changed" C; it is a data description language, not a
programming language.

Basic Block Size
The representation of all items requires a multiple of 4 bytes (or 32 bits) of
data. The bytes are numbered 0 through n-1, where (n mod 4) = o. The bytes
are read, or written to, a byte stream such that byte m always precedes byte
m+1.

Integer
An XDR signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648,2147483647J. The integer is represented in two's complement
notation. The most and least significant bytes are 0 and 3, respectively. The
data description of integers is integer.

XDR Protocol Specification 5 - 37

Unsigned Integer
An XDR unsigned integer is a 32-bit datum that encodes a non-negative
integer in the range [0,4294967295 J. It is represented by an unsigned
binary number whose most and least significant bytes are 0 and 3, respectively.
The data description of unsigned integers is unsigned.

Enumerations
Enumerations have the same representation as integers and are useful for
describing subsets of the integers. The data description of enumerated data is
as follows.

typedef enum { name = value, ... } type-name;

For example, you could describe the three colors red, yellow, and blue by an
enumerated type.

typedef enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

Booleans
Since booleans are important and occur frequently, they warrant their own
explicit type in the standard. The boolean type is an enumeration with the
following form.

typedef enum { FALSE = 0, TRUE = 1 } boolean;

Floating Point and Double Precision
The standard defines the encoding for the floating point data types float (32
bits or 4 bytes) and double (64 bits or 8 bytes). The standard encodes the
following three fields to describe the floating point number.

5-38 XDR Standard

s

E

F

The sign of the number. Values 0 and 1 represent positive
and negative, respectively.

The exponent of the number, base 2. Type float devotes 8
bits to this field; double devotes 11 bits. The exponents for
float and double are biased by 127 and 1023, respectively.

The fractional part of the number's mantissa, base 2. Type
float devotes 23 bits to this field; double devotes 52 bits.

Therefore, the floating point number is described as follows.

(_I)S * 2(E-Bias) * (l.f)

Just as the most and least significant bytes of a number are 0 and 3, the most
and least significant bits of a single-precision floating point number are 0 and
31. The beginning bit (and most significant bit) offsets of S, E, and Fare 0, 1,
and 9, respectively.

Type double has the analogous extensions. The beginning bit (and most
significant bit) offsets of S, E, and Fare 0, 1, and 12, respectively.

Consult the ANSI-IEEE 754-1985 specification concerning the encoding for
signed zero, signed infinity (overflow), and denormalized numbers
(underflow). Under ANSI-IEEE 754-1985 specifications, the "NaN" (not a
number) is a system dependent and should not be used.

XDR Protocol Specification 5 - 39

Opaque Data
You may need to pass flXed-sized uninterpreted data among nodes. This data
is called opaque and is described as follows.

typedef opaque type-name[n];
opaque name [n] ;

The n is the (static) number of bytes necessary to contain the opaque data. If
n is not a multiple of four, then the n bytes are followed by enough (up to
three) zero-valued bytes to make the total byte count of the opaque object a
multiple of four.

Counted Byte Strings
The XDR standard defines a string of n (numbered 0 through n-l) bytes to be
the number n encoded as unsigned and followed by the n bytes of the string. If
n is not a multiple of four, the n bytes are followed by enough (up to three)
zero-valued bytes to make the total byte count a multiple of four. The data
description of strings is as follows.

typedef string type-name<N>;
typedef string type-name<>;
string name<N>;
string name<>;

Note, the data description language uses angle brackets « and » to denote
anything that varies in length (instead of square brackets to denote
flXed-Iength sequences of data).

The constant N denotes an upper bound of the number of bytes that a strin~
can contain. The protocol using XDR specifies N which must be less than 2 2

- 1. For example, a filing protocol may state that a file name can be no longer
than 255 bytes.

string filename<255>;

5 - 40 XDR Standard

The XDR specification does not define what the individual bytes of a string
represent; this important information is left to higher-level specifications. A
reasonable default is to assume the bytes encode ASCII characters.

Fixed Arrays
The data description for fIXed-size arrays of homogeneous elements is as
follows.

typedef elementtype type-name[n];
elementtype name[n];

Fixed-size arrays of elements numbered 0 through n-J are encoded by
individually encoding the elements of the array in their natural order, 0
through n-l.

Counted Arrays
Counted arrays provide the ability to encode variable-length arrays of
homogeneous elements. The array is encoded as

• the element count n (an unsigned integer),

• followed by the encoding of each of the array's elements, starting with
element 0 and progressing through element n-l.

The data description for counted arrays is similar to that of counted byte
strings.

typedef elementtype type-name<N>;
typedef elementtype type-name<>;
elementtype name<N>;
elementtype name<>;

The constant N specifies the maximum acceptable element count of an array
that must be less than 232

- 1.

XDR Protocol Specification 5 - 41

Structures
The data description for structures is very similar to that of standard C.

typedef struct {
component-type component-name;

} type-name;

An XDR routine generally encodes the structure components in the order of
their declaration in the structure, but need not do so.

Discriminated Unions
A discriminated union is a type composed of a discriminant followed by a type
selected from a set of pre-arranged types according to the value of the
discriminant. The type of the discriminant is always an enumeration. The
component types are called "arms" of the union. The discriminated union is
encoded as its discriminant followed by the encoding of the implied arm. The
data description for discriminated unions is as follows.

typedef union switch (discriminant-type) {
discriminant-value: arm-type;

default: default-arm-type;
type-name;

The default arm is optional. If it is not specified, a valid encoding of the union
cannot take on unspecified discriminant values. Most specifications do not
need or use default arms.

5-42 XDR Standard

Missing Specifications
The XDR standard lacks representations for bit fields and bitmaps since it is
based on bytes. However, this lack of representations does not mean bit fields
and bit maps cannot be represented.

Library Primitive / XDR Standard Cross
Reference
The following table describes the association between the C library primitives
and the standard data types.

XDR Protocol Specification 5 - 43

.... ::"::.. ·······::·:·:::;·::C;:·.·:·PtrmttfV.':::i:::),:,}::::;,: ,:,::,:::;:::::,,::::":: ::::::,:::::,::""""::,,,,(: ''':::: .:.'.:.:: .. :.·:.·.:.:.:.:.:.:.· .•. X.·.··.".:.·.:.D.·.:.· .. :.·.:.:R.·.·.:· .. ·.·.::.· .•. :.:.T.:.·.:." .. ".y:::,:':P::.·:.·.:.: .•• :.:: .. :.:.:.:.:.:.:.:.:·.:.:.:.:.:.:.:.:.:.:.:'.'.:: .. :.:.:.:.:.:.:.:.::.:.:.:'.:.:.:.:.:.: :':",::".,.,:,:,:,.;.:" ~:}~:~:)~{{:~:}~{{ :.:-:.:-::::::::: .. :::::;:::::;:::::;:::::;::::::::: :::::::::::::::; .:::;:::::::;:::::::::;:::::;

xdr int
xdr=long
xdr short

xdr u int
xdr=u=long
xdr u short

xdrJloat

xdr double

xdr enum

xdr bool

xdr array
xdr vector

xdr opaque

xdr' union

xdr Jeference
xdryointer

xdr char
xdr-u char

User Provided

5 - 44 XDR Standard

Integer

Unsigned

Float
Double
enum t
bool t

String

(Varying arrays)
(Fixed arrays)
Opaque
Union
Pointers

Char

Struct

Advanced XDR Topics
This section describes techniques for passing data structures that are not
covered in the preceding sections. Such structures include linked lists (of
arbitrary lengths).

Unlike the simpler examples covered in the earlier sections, the following
examples use both the XDR C library routines and the XDR data description
language.

Linked Lists
The following C data structure example contains XDR routines for a person's
gross assets and liabilities.

EXAMPLE:

struct gnumbers {
long g_assets:
long g_liabilities;

} ;

boo 1 t
xdr gnumbers(xdrs. gp)

- XDR *xdrs;
struct gnumbers *gp;

{
if (xdr_long(xdrs. &(gp->g_assets»)

return(xdr_long(xdrs. &(gp->g_liabilities»);
return(FAlSE);

}

XDR Protocol Specification 5 - 45

Now assume you wish to implement a linked list of such information. You
could construct a data structure as follows.

typedef struct gnnode {

} ;

struct gnumbers gn numbers;
struct gnnode *nxt;

typedef struct gnnode *gnumbers_list;

Think of the head of the linked list as representing the entire link list. The nxt
field indicates whether or not the object has terminated. If the object
continues, the nxt field is also the address of where it continues. The link
addresses carry no useful information when the object is serialized.

The XDR data description of this linked list is described by the recursive type
declaration of gnumbers _list.

struct gnumbers {

} ;

unsigned g_assets;
unsigned g_liabilities;

typedef union switch (boolean) {
case TRUE: struct {

} ;

struct gnumbers current_element;
gnumbers_list rest_of_list;

case FALSE: struct {};
gnumbers_list;

In this description, the boolean indicates whether there is more data following
it. If the boolean is FALSE, it is the last data field of the structure. If it is
TRUE, it is followed by a gnumbers structure and (recursively) by a
gnumbers_Iist (the rest of the object). Note, the C declaration has no boolean
explicitly declared in it (though the nxt field implicitly carries the information);
the XDR data description has no pointer explicitly declared in it.

5-46 Advanced XDR Topics

Hints for writing a set of XDR routines to successfully serialize or
deserialize a linked list of entries are in the XDR description of the
pointer-less data. This set includes the mutually recursive routines
xdr ffiumbers _list, xdr _wrap _list, and xdr ffinode.

boo 1 t
xdr_gnnode(xdrs, gp)

XDR *xdrs;

{

}

bool_t

struct gnnode *gp;

return(xdr_gnumbers(xdrs, &(gp->gn_numbers» &&
xdr_gnumbers_list(xdrs, &(gp->nxt»);

xdr_wrap_list(xdrs, glp)
XDR *xdrs;
gnumbers_list *glp;

{

}

return(xdr_reference(xdrs, glp, sizeof(struct gnnode),
xdr_gnnode»;

struct xdr_discrim choices[2] = {
/*

}

* called if another node needs (de)serializing
*/

{ TRUE, xdr_wrap_list },
/*
* called when no more nodes need (de)serializing
*/

{ FALSE, xdr_void }

XDR Protocol Specification 5 - 47

bool_t
xdr_gnumbers_list(xdrs, glp)

XDR *xdrs;
gnumbers_list *glp;

{

more_data = (*glp != (gnumbers_list)NULL);
return(xdr_union(xdrs, &more_data, glp, choices, NULL));

The entry routine is xdr ..,gnumbers_list(); it translates between the boolean
value more_data and the list pointer values. If there is no more data, the
xdr _union () primitive calls xdr _void() and the recursion terminates.
Otherwise, xdr _ union () calls xdr _wrap _list() to dereference the list pointers.
The xdr ..,gnnode() routine actually serializes or deserializes data of the current
node of the linked list and recursively calls xdr -Plumbers _list() to handle the
remainder of the list.

These routines function correctly in all three directions (XDR _ENCODE,
XDR_DECODE, and XDR_FREE) for linked lists of any length (including
zero). Note, the boolean more_data is always initialized, but in the
XDR_DECODE case it is overwritten by an externally generated value. Also
note the value of the bool t is lost in the stack. The value is reflected in the
list's pointers. -

If serializing or deserializing a list with these routines, the C stack grows
linearly with respect to the number of nodes in the list. This linear growth is
due to the recursion. The routines are also hard to code and understand due
to the number and nature of primitives involved (e.g., xdr Jeference, xdr _union,
and xdr _void).

5-48 Advanced XDR Topics

EXAMPLE: This example routine collapses the recursive routines. It also
has other optimizations as discussed afterwards.

boo 1 t
xdr_gnumbers_1ist(xdrs. glp)

XDR *xdrs;
gnumbers_1ist *glp;

{

}

whi 1e (TRUE) {

}

more_data = (*glp != (gnumbers_1ist)NULL);
if (!xdr boo1(xdrs. &more data»

return(FALSE); -
if (!more data)

return(TRUE); /* we are done */
if (!xdr_reference(xdrs. glp. sizeof(struct gnnode).

xdr gnumbers»
return(FALSE) ;

glp = &((*glp)->nxt);

This one routine is easier to code and understand than the above three
recursive routines. However, it does have difficulties. The parameter glp is
treated as the address of the pointer to the head of the remainder of the list
to be serialized or deserialized. Thus, glp is set to the address of the current
node's nxt field at the end of the while loop. The discriminated union is
implemented in-line; the variable more _data has the same use in this routine
as in the above routines. Its value is recomputed and re-serialized or
re-deserialized each iteration of the loop. Since *g/p is a pointer to a node, the
pointer is dereferenced using xdr Jeference. Note, the third parameter is truly
the size of a node (data values plus nxt pointer), while xdr ...Kflumbers() only
serializes or deserializes the data values. This optimization works only because
the nxt data occurs after all legitimate external data.

The routine has difficulties in the XDR_FREE case. The xdr Jeference() frees
the node *glp. Upon return, the assignment glp = &((*glp)->nxt) cannot be
guaranteed to work since *g/p is no longer a legitimate node.

The following rewrite works in all cases. You should avoid dereferencing a
pointer that was not initialized or was already freed.

XDR Protocol Specification 5 - 49

boo 1 t
xdr_gnumbers_list(xdrs. glp)

XDR *xdrs;
gnumbers_list *glp;

{

}

bool t more data;
bool=t freeing;
gnumbers_list *next; /* the next value of glp */

freeing = (xdrs->x_op == XDR_FREE);
whi le (TRUE) {

}

more_data = (*glp 1= (gnumbers_list)NULL);
if (!xdr bool(xdrs. &more data»

return(FALSE); -
if (!more data)

return(TRUE); /* we are done */
if (freeing)

next = &((*glp)->nxt);
if (!xdr_reference(xdrs. glp. sizeof(struct gnnode),

xdr gnumbers»
return(FALSE) ;

glp = (freeing) ? next &((*glp)->nxt);

5-50 Advanced XDR Topics

Note, the previous example inspects the direction of the operation
xdrs->x_op. The correct iterative implementation is still easier to understand
or code than the recursive implementation. It is certainly more efficient with
respect to C stack usage.

Record Marking Standard
Record marking (RM) is the process of delimiting one message from another
when RPC messages pass on top of a byte stream protocol (like TCP /lP). RM
helps detect and possibly recover from user protocol errors. This RMffCP /lP
transport passes RPC messages on TCP streams. One RPC message fits into
one RM record.

A record contains one or more record fragments. A record fragment is a
4-byte header followed by 0 to 231_1 bytes of fragment data. The bytes
encode an unsigned binary number; as with XDR integers, the byte order is
from highest to lowest. The number encodes two values:

• a boolean indicating whether the fragment is the last fragment of the record
(bit value 1 implies the fragment is the last fragment) and

• a 31-bit unsigned binary value that is the length in bytes of the fragment's
data.

The boolean value is the highest-order bit of the header; the length is the 31
low-order bits. (Note, this record specification is not in XDR standard form.)

XDR Protocol Specification 5 - 51

Synopsis of XDR Routines

Routine

Description

Synopsis

A filter primitive that translates between arrays and their
corresponding external representations.

The parameter arrp is the address of the pointer to the
array.

The parameter sizep is the address of the element count of
the array; this element count cannot exceed maxsize.

The parameter elsize is the sizeofO each of the array's
elements.

The parameter elproc is an XDR filter that translates
between the array elements' C form and their external
representa tions.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
xdr_array(xdrs. arrp, sizep, maxsize. elsize, elproc)

XDR*xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc t elrpoc;

5 - 52 Synopsis· of XDR Routines

Routine

Description

Synopsis

Routine

Description

Synopsis

xdr_bool()

A filter primitive that translates between booleans (C
integers) and their external representations.

When encoding data, this filter produces values of either
TRUE or FALSE.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
xdr j>oo 1 (xdrs, bp)

XDR *xdrs;
bool_t *bp;

A filter primitive that translates between counted byte
strings and their ~xternal representations.

The parameter sp is the address of the byte string pointer.

The length of the byte string is located at address sizep; byte
strings cannot be longer than maxsize.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
xdr bytes(xdrs, sp, sizep, maxsize)

-XDR *xdrs;
char **sp;
u_int *sizep, maxsize;

XDR Protocol Specification 5 - 53

Routine xdr_charO
Description A filter primitive that translates between C characters and

their external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool t
xdr _char(xdrs, cp)

XDR *xdrs;
char *cp;

Routine xdr _ destroy()

Description A macro that invokes the destroy routine associated with
the XDR stream xdrs.

Destruction usually involves freeing private data structures
associated with the stream.

Using xdrs after invoking xdr _ destroy() is undefined.

Synopsis void
xdr_destroy(xdrs)

XDR *xdrs;

5 - 54 Synopsis of XDR Routines

Routine xdr _ double 0
Description A filter primitive that translates between C double precision

numbers and their external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool t
xdr_double(xdrs. dp)

XDR *xdrs;
double *dp;

Routine xdr_enum()

Description A filter primitive that translates between the C enum (an
integer) and its eXternal representation.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool t
xdr_enum(xdrs. ep)

XDR *xdrs;
enum t *ep;

XDR Protocol Specification 5 - 55

Routine xdrJloat()
Description A filter primitive that translates between the C float and its

external representation.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool t
xdr_float(xdrs, fp)

XDR *xdrs;
float *fp;

Routine xdr ...xetpos ()
Description A macro that invokes the get-position routine associated

with the XDR stream xdrs.

The routine returns an unsigned integer to indicate the
XDR byte stream position. A desirable feature of XDR
streams is that simple arithmetic works with this number,
although the XDR stream instances need not guarantee this.

If this routine fails, it returns (u_int) -J.
Synopsis u int

xdr_getpos(xdrs)
XDR *xdrs;

5 - 56 Synopsis of XDR Routines

Routine xdrJree
Description This routine frees the memory that an XDR data structure

occupies. It can be used on arbitrary structures.

The first parameter, proc, is a pointer to the XDR routine
for the object being freed. The second parameter, objp,
points to the object to be freed.

Synopsis void
xdr_free(proc. objp)

xdrproc_t proc;
char *objp;

Note The pointer passed to this routine is NOT freed, but what it
points to is freed.

Routine xdr _ inline ()
Description A macro that invokes the in-line routine associated with the

XDR streamxdrs.

The routine returns a pointer to a contiguous piece of the
stream's buffer; len is the byte length of the desired buffer.

The pointer is cast to long *.
Synopsis long *

xdr_inline(xdrs. len)
XDR *xdrs;
int len;

Note Thexdr_inline() function may return NULL if it cannot
allocate a contiguous piece of a buffer; therefore, the
behavior may vary among stream instances. The
xdr _ inline() routine exists for the sake of efficiency, though
HP recommends that you do not use it

XDR Protocol Specification 5 - 57

Routine xd,_intO
Description A filter primitive that translates between C integers and

their external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool t
xdr J" nt (xdrs • ip)

XDR *xdrs;
int *ip;

Routine xd,_longO
Description A filter primitive that translates between C long integers

and their external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool t
xdr_long(xdrs. lp)
XDR *xdrs;
long * lp;

5 - 58 Synopsis of XDR Routines

Routine

Description

Synopsis

Routine

Description

Synopsis

xdr _ opaque()

A filter primitive that translates between fixed size opaque
data and its external representation.

The parameter ep is the address of the opaque object, and
ent is its size in bytes.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
xdr_opaque(xdrs, cp, cnt)

XDR *xdrs;
chap *cp;
u_int cnt;

xdr yointer()

A routine that is similar to xdr Jeferenee() in that it provides
pointer dereferencing within structures. It differs from
xdr Jeferenee() in its ability to handle NULL pointers.
Therefore xdr yointer() can create recursive data structures,
such as binary trees or linked lists, correctly, whereas
xdr Jeferenee () will fail.

The parameter xproc is an XDR procedure that filters the
structure between its C form and its external representation.

This routine returns TRUE if it succeeds or FALSE if it
does not.

xdr_pointer(xdrs, objpp, objsize, xproc)
XDR *xdrs;
char **objpp;
u_int objsize;
xdrproc_t xproc;

XDR Protocol Specification 5 - 59

Routine

Description

Synopsis

Routine

Description

Synopsis

Note

xdr Jeference()
A primitive that provides pointer dereferencing within
structures.

The parameter pp is the address of the pointer.

The parameter size is the sizeof() the structure to which
*pp points.

The parameter proc is an XDR procedure that filters the
structure between its C form and its external representation.

This routine returns TRUE if it succeeds or FALSE if it
does not.

baal t
xdr reference(xdrs, pp, size, prac)

-XDR *xdrs;
char **pp;
u_int size;
xdrprac t prac;

xdr setpos()
A macro that invokes the set position routine associated
with the XDR stream xdrs.

The parameter pos is a position value obtained from
xdr ..Eetpos.

This routine returns TRUE if the XDR stream could be
repositioned or FALSE if it could not.

baal t
xdr_setpas(xdrs, pas)

XDR *xdrs;
u int pas;

Since it is difficult to reposition some types of XDR
streams, this routine may fail with one type of stream and
succeed with another.

5 - 60 Synopsis of XDR Routines

Routine

Description

Synopsis

Routine

Description

Synopsis

xdr _short()

A filter primitive that translates between C short integers
and their external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

beel t
xdr_shert(xdrs, sp)

XDR *xdrs;
short *sp;

A filter primitive that translates between null-terminated
strings and their corresponding external representations.

Strings cannot be longer than maxsize.

The parameter sp is the address of the string's pointer.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
xdr string(xdrs, sp, maxsize)

-XDR *xdrs;
char ** sp;
u_int maxsize;

XDR Protocol Specification 5 - 61

Routine

Description

Synopsis

Routine

Description

Synopsis

xdr _ u _char()
A filter primitive that translates between C unsigned
characters and their external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

hool t
xdr_u_char(xdrs, ucp)

XDR *xdrs;
unsigned char *ucp;

A filter primitive that translates between a discriminated C
union and its corresponding external representation.

The parameter dscmp is the address of the union's
discriminant.

The parameter unp in the address of the union.

This routine returns TRUE if it succeeds or FALSE if it
does not.

hool t
xdr union(xdrs, dscmp, ump, choises, dfault)

-XDR *xdrs;
int *dscmp;
char *unp;
struct xdr discrim *choises;
xdrproc_t dfault;

5 - 62 Synopsis of XDR Routines

Routine

Description

Synopsis

Routine

Description

Synopsis

Note

A filter primitive that translates between fIXed-length arrays
and their corresponding external representations.

The parameter arrp is the address of the beginning of the
array. The parameter elsize is the sizeof of each of the
array's elements, and elproc is an XDR filter that translates
between the array elements' C form and their external
representation.

This routine returns TRUE if it succeeds and FALSE if
does not.

bool t
xdr vector(xdrs, arrp, size, elsize, elproc)

-XDR *xdrs;
char *arrp;
u_int size, elsize;
xdrproc_t elproc;

xdr_void()

This routine takes no arguments and always returns TRUE.

bool t
xdr void()

Use this routine when an XDR routine is required

XDR Protocol Specification 5 - 63

Routine

Description

Synopsis

Routine

Description

Synopsis

A primitive that calls xdr _string(xdrs,sp,MAXUNSIGNED)
where MAXUNSIGNED is the maximum value of an
unsigned integer.

This routine is useful because the RPC package passes only
two parameter XDR routines; xdr_string(), one of the most
frequently used primitives, requires three parameters.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
xdr wrapstring(xdrs, sp)

-XDR *xdrs;
char **sp;

xdr _u_int()

A filter primitive that translates between C unsigned
integers and their external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
xdr_u_int(xdrs, up)

XDR *xdrs;
unsigned *up;

5 - 64 Synopsis of XDR Routines

Routine xdr _ u _long()
Description A filter primitive that translates between C unsigned long

integers and their external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool t
xdr_u_long(xdrs, ulp)

XDR *xdrs;
unsigned long *u1p;

Routine xdr_u_short()
Description A filter primitive that translates between C unsigned short

integers and their external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis boo1 t
xdr_u_short(xdrs, usp)

XDR *xdrs;
unsigned short *usp;

XDR Protocol Specification 5 - 65

Routine

Description

Synopsis

xdnnem _create ()
This routine initializes the XDR stream object pointed to
byxdrs.

The stream's data is written to, or read from, memory at
location addr whose length is no more than size bytes long.

The op determines the direction of the XDR stream (either
XDR_ENCODE,XDR_DECODE, or XDR_FREE).

void
xdrmem create(xdrs, addr, size, op)

xo'R *xdrs;
char *addr;
u_int size;
enum xdr _op op;

5 - 66 Synopsis of XDR Routines

Routine
Description

Synopsis

Note

This routine initializes the XDR stream object pointed to
byxdrs.

The stream's data is read from a buffer of size recvsize; it
can also be set to a suitable default by passing a zero value.

The stream's data is written to a buffer of size sendsize; it
can also be set to a suitable default by passing a zero value.

When a stream's input buffer is empty, readit() is called.
When a stream's output h\lffer is full, writeit() is called.

The behavior of these two routines is similar to the UNIX
system calls read() and write (), except that handle is
passed to the former routines as the first parameter.

The XDR stream's op field must be set by the caller.

void
xdrrec create(xdrs, recvsize, handle, readit, writeit)

xo'R *xdrs;
u int sendsize, recvsize;
char *handle;
int (*readit) (), (*writeit) ();

Additional bytes in the stream are used to provide record
boundary information.

XDR Protocol Specification 5 - 67

Routine
Description

Synopsis

xdITec_endojTecord()
Invoke this routine only on streams created by xdITec_create.

The data in the output buffer is marked as a completed
record.

The output buffer is optionally written out if sendnow is
nonzero.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool t
xdrr;c endofrecord(xdrs. sendnow)

XOR *xdrs;
; nt sendnow;

5 - 68 Synopsis of XDR Routines

Routine xd"ec_eof()
Description Invoke this routine only on streams created by xd"ec_create.

After consuming the remainder of the current record in the
stream, this routine returns TRUE if the stream has no
more input or FALSE if it does.

Synopsis bool t
xdrrec_eof(xdrs)

XDR *xdrs;
int empty;

Routine xd"ec _skiprecord()
Description Invoke this routine only on streams created by xd"ec _create.

This routine tells the XDR implementation that the rest of
the current record in the stream's input buffer should be
discarded.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool t
xdrrec_skiprecord(xdrs)

XDR *xdrs;

XDR Protocol Specification 5 - 69

Routine xdrstdio create()

Description This routine initializes the XDR stream object pointed to
byxdrs.

The XDR stream data is written to or read from the
Standard I/O stream [ue.

The parameter op determines the direction of the XDR
stream (either XDR_ENCODE,XDR_DECODE, or
XDR_FREE).

Synopsis void
xdrstdio_create(xdrs, file, op)

XDR *xdrs;
FILE *fi le;
enum xdr _op op;

Note The destroy routine associated with such XDR streams calls
!flush () on the [ue stream.

5 - 70 Synopsis of XDR Routines

6

RPC Protocol Specification

This chapter explains the message protocol that is

• used to implement the RPC (Remote Procedure Call) package and

• specified with the XDR (eXternal Data Representation) language.

You should be familiar with both RPC and XDR before reading this chapter.

RPe Protocol Specification 6-1

RPe Model
The RPC model is similar to the local procedure call model. In the local case,
the caller places arguments to a procedure in a specific location (e.g., a result
register). It then transfers control to the procedure and eventually gains back
control. The results of the procedure are extracted from the specified location,
and the caller continues execution.

The remote procedure call is similar, except that one thread of control winds
through two processes: one is a caller's process, the other is a server's process.

The caller process sends a call message to the server process and waits
(blocks) for a reply message. The call message contains the procedure's
parameters, and the reply message contains the procedure's results. After
receiving the reply message, the caller process extracts the procedure results
and resumes execution.

On the server side, a process is dormant while awaiting the arrival of a call
message. When one arrives, the server process

• extracts the procedure's parameters,

• computes the results,

• sends a reply message, and then

• waits for the next call message.

Note, only one of the two processes is active at any given time. The RPC
protocol does not explicitly support simultaneous execution of caller and
server processes.

6-2 RPe Model

Transports and Semantics
Since the RPC protocol is independent of transport protocols, it does not care
how a message passes from one process to another. It determines the
specification interpretation of messages, but does not determine the specific
semantics.

• An RPC message passing protocol using UDP/IP is unreliable. Thus, if the
caller retransmits call messages after short time-outs, the only thing it can
determine

• from no reply message is that the remote procedure was executed zero
or more times and

• from a reply message, the remote procedure was executed one or more
times.

• An RPC message passing using TCP/IP is reliable. No reply message means
the remote procedure was executed at most once, whereas a reply message
means the remote procedure was executed exactly once.

Note RPC is currently implemented on top of the TCP /lP and
UDP/IP transports.

Message Authentication
The RPC protocol provides the fields necessary for a client to identify itself to
a service and vice versa. You can build security access control mechanisms on
top of the message authentication.

RPe Protocol Specification 6-3

RPe Protocol Requirements
The RPC protocol must provide for the following items.

• Unique specification of a procedure to be called

• Provisions for matching response messages to request messages

• Provisions for authenticating the caller to service and vice versa

The features that detect the following items are required because of protocol
roll-over errors, implementation defects, user error, and network
administration.

• RPC protocol mismatches

• Remote program protocol version mismatches

• Protocol errors (e.g., mis-specification of a procedure's parameters)

• Reasons why remote authentication failed

• Any other reasons why the desired procedure was not called

Remote Programs and Procedures
The RPC call message has three unsigned fields:

• remote program number,

• remote program version number, and

• remote procedure number.

These fields uniquely identify the procedure being called. A central authority
administers the program numbers. Once you have a program number, you can
implement a remote program; the first implementation would most likely have
the version number of 1. Since most new protocols evolve into more stable
and mature protocols, a version field of the call message identifies which
protocol version the caller is using. Version numbers enable you to speak old
and new protocols through the same server process.

The procedure number identifies the procedure being called. These numbers
are in the specific program's protocol specification. For example, a file

6-4 RPe Protocol Requirements

service's protocol specification may state that its procedure number 5 is read
and procedure number 12 is write.

Just as remote program protocols may change over several versions, the actual
RPC message protocol can also change. Therefore, the call message also has
the RPC version number in it; this documentation describes version 2 of the
RPC protocol.

The reply message to a request message has ample information to distinguish
the following error conditions.

• The remote implementation of RPC does not speak protocol version 2.

• The remote program is not available on the remote system.

• The remote program does not support the requested version number. The
lowest and highest supported remote program version numbers are
returned.

• The requested procedure number does not exist (this is usually a caller side
protocol or programming error).

• The parameters to the remote procedure are invalid from the server's point
of view. (This error results from a disagreement about the protocol between
caller and service.)

RPC Protocol Specification 6 - 5

Authentication
The call message has two authentication fields: the credentials and verifier.
The reply message has one authentication field: the response verifier. The
RPC protocol specification defines all three fields as the following opaque
type.

enum auth_flavor {
AUTH_NULL= 0,
AUTH_UNIX= I,
AUTH SHORT= 2
/* and more to be defined */

} ;

struct opaque_auth {

} ;

union switch (enum auth_flavor) {
default: string auth_body<400>;

} ;

Any opaque _ auth structure is an auth Jlavor enumeration followed by a
counted string whose bytes are opaque to the RPC protocol implementation.

Independent authentication protocol specifications describe the interpretation
and semantics of the data contained within the authentication fields.

If the server rejects the RPC call due to authentication parameters, the
response message states why they were rejected.

Refer to the "Portmapper Program Protocol" section for the definition of the
three authentication protocols.

6-6 RPe Protocol Requirements

Program Numbers
Program numbers are assigned in groups of Ox20000000 as follows.

o - lfffffff defined by Sun l

20000000 - 3fffffff defined by user
40000000 - 5fffffff transient
60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

o - Itmm defined by Sunl

Sunl Microsystems, Inc. administers the first group of numbers which should
be identical for all systems. If you develop an application of general interest,
that application should receive an assigned number in the first range.

20000000 - 3tl1ll1T defined by user

The second group of numbers is reserved for specific customer applications.
This range is primarily for debugging new programs.

40000000 - Stmm transient

The third group is reserved for applications that generate program numbers
dynamically.

(1) (C) Copyright 1986, 1987, 1988 Sun Microsystems, Inc.

RPC Protocol Specification 6 - 7

60000000 - 7ft1111T reserved
80000000 - 9ft1111T reserved
aOOOOOOO - bft1111T reserved
cOOOOOOO - dft1111T reserved
eOOOOOOO - ffI1111T reserved

The final groups are reserved for future use and should not be used.

To register a protocol specification, send a request to the following
address. Please include a complete protocol specification, similar to those in
this manual. In return, you will receive a unique program number.

Network Administration Office, Dept. NET
Information Networks Division
Hewlett-Packard Company
19420 Homestead Road
Cupertino, California 95014
408-447 -3444

Additional RPC Protocol Uses
This protocol is for calling remote procedures; each call message generates a
matching response message.

The protocol is also a message passing protocol with which you can implement
other non-RPC protocols. RPC message protocols are used for the following
two non-RPC protocols: batching (or pipelining) and broadcast RPC.

6-8 RPC Protocol Requirements

Batching
Batching allows a client to send an arbitrarily large sequence of call messages
to a server; it uses reliable byte stream protocols (like TCP lIP) for their
transport.

The client never waits for a reply from the server, and the server does not
send replies to batch requests. A non-batched RPC call usually terminates a
sequence of batch calls to flush the batched requests by waiting for positive
acknowledgement.

Broadcast RPC
In broadcast RPC-based protocols, the client sends a broadcast packet to the
network and waits for numerous replies. Broadcast RPC uses unreliable,
packet-based protocols (like UDPIIP) as their transports. Servers that support
broadcast protocols only respond when the request is successfully processed
and are silent when errors occur.

RPC Protocol Specification 6- 9

RPe Message Protocol
This section defines the RPC message protocol in the XDR data description
language.

Note The following code is an XDR specification, not C code.

enum msg_type {
CALL = 0,
REPLY = 1

} ;

/*
* A reply to a call message can take on two forms:
* the message was either accepted or rejected.
*/

enum reply_stat {
MSG_ACCEPTED 0,
MSG_DENIED = 1

} ;

/*
* Given that a call message was accepted,the following is
* the status of an attempt to call a remote procedure.
*/

enum accept_stat {
SUCCESS = 0,
PROG_UNAVAIL=l,
PROG_MISMATCH = 2,
PROC_UNAVAIL 3,
GARBAGE_ARGS = 4

} ;

/* RPC executed successfully */
/* remote has not exported program */
/* remote cannot support version' */
/* program cannot support procedure */
/* procedure cannot decode params */

6 -1 0 RPC Message Protocol

/*
* Reasons why a call message was rejected:
*/

enum reject_stat {
RPC_MISMATCH
AUTH_ERROR = 1

0, /* RPC version number != 2 */
/* remote cannot authenticate caller */

} ;
/*
* Why authentication failed:
*/

enum auth_stat {

} ;

/*

AUTH_BADCRED = 1, /* bad credentials (seal broken) */
AUTH_REJECTEDCRED=2, /* client must begin new session */
AUTH_BADVERF = 3, /* bad verifier (seal broken) */
AUTH_REJECTEDVERF=4, /* verifier expired or replayed */
AUTH_TOOWEAK = 5, /* rejected for security reasons */

* The RPC message:
* All messages start with a transaction identifier, xid,
* followed by a two-armed discriminated union. The union's
* discriminant is a msg_type which switches to one of the
* two types of the message. The xid of a REPLY message
* always matches that of the initiating CALL message. NB:
* The xid field is only used for clients matching reply
* messages with call messages; the service side cannot
* treat this id as any type of sequence number.
*/

struct rpc_msg {
unsigned xid;

} ;

union switch (enum msg_type) {
CALL: struct call body;
REPLY: struct reply_body;

} ;

RPC Protocol Specification 6-11

/*
* Body of an RPC request call:
* In version 2 of the RPC protocol specification, rpcvers
* must be equal to 2. The fields prog, vers, and proc
* specify the remote program, its version number, and the
* procedure within the remote program to be called. After
* these fields are two authentication parameters: cred
* (authentication credentials) and verf (authentication
* verifier). The two authentication parameters are
* followed by the parameters to the remote procedure,
* which are specified by the specific program protocol.
*/

struct call_body {

} ;

/*

unsigned rpcvers; /* must be equal to two (2) */
unsigned prog;
unsigned vers;
unsigned proc;
struct opaque_auth cred;
struct opaque_auth verf;
/* procedure specific parameters start here */

* Body of a reply to an RPC request.
* The call message was either accepted or rejected.
*/

struct reply_body {
union switch (enum reply_stat) {

MSG_ACCEPTED:struct accepted_reply;
MSG_DENIED:struct rejected_reply;

} ;
} ;

6 -12 RPC Message Protocol

/*
* Reply to an RPC request that was accepted by the server.
* Note: there could be an error even though the request
* was accepted. The first field is an authentication
* verifier that the server generates in order to validate
* itself to the caller. It is followed by a union whose
* discriminant is an enum accept stat. The SUCCESS arm
* of the union is protocol specific. The PROG_UNAVAIL,
* PROC UNAVAIL, and GARBAGE ARGS arms of the union are
* void~ The PROG_MISMATCH ;rm specifies the lowest and
* highest version numbers of the remote program that are
* supported by the server.
*/

struct accepted_reply {

} ;

struct op aque_authverf;
union switch (enum accept_stat) {

SUCCESS: struct {

} ;

} ;

/*
* procedure-specific results start here
*/

PROG MISMATCH: struct {
unsigned low;
unsigned high;

} ;
default: struct {

} ;

/*
* void. Cases include PROG UNAVAIL,
* PROC UNAVAIL, and GARBAGE_ARGS.
*/ -

RPe Protocol Specification 6-13

/*
* Reply to an RPC request that was rejected by the server.
* The request can be rejected because of two reasons:
* either the server is not running a compatible version of
* the RPC protocol (RPC_MISMATCH), or the server refuses
* to authenticate the caller (AUTH ERROR). In the case
* of refused authentication, failure status is returned.
*/

struct rejected_reply {

} ;

union switch (enum reject stat) {
RPC MISMATCH: struct {

- unsigned low;
unsigned high;

} ;
AUTH_ERROR: enum auth_stat;

} ;

Authentication Parameter Specification
The RPC protocol does not define how to use authentication parameters,
rather it passes them, unmodified, between client and server. The client and
server applications are responsible for interpreting the authentication
parameters.

Note The RPC protocol allows you to specify your own form of
authentication, but to do so you must have access to the
RPC authentication source files. Implementations based on
NFS 3.2 (including HP-UX 6.5 for Series 300 computers
and HP-UX 7.0 for Series 800 computers) do not allow you
to define your own form of authentication.

6 -14 RPC Message Protocol

NULL Authentication
The caller may not know who it is, or the server may not care who the caller
is. In this case, the auth Jlavor value (the discriminant of the opaque _auth 's
union) of the RPC message's credentials, verifier, and response verifier is
AUTH_NULL (0). The bytes of the auth_body string are undefined. We
recommend the string length be zero.

UNIX2 Authentication
The caller of a remote procedure may wish to identify himself as he is
identified on a UNIX2 system.

• The value of the credential's discriminant of an RPC call message is
AUTH_UNIX(l).

• The bytes of the credential's string encode the following XDR structure.

struct auth unix
{ -

} ;

unsigned stamp;
string machinename<255>;
unsigned uid;
unsigned gid;
unsigned gids <8>;

(2) UNIX (R) is a U.s. registered trademark of AT&T in the U.S.A. and other countries.

RPC Protocol Specification 6-15

):::::.::::::: J ~~. :::::}}::::}}::
:::::::·::::::::::m ecce:::::::::::::::::: :::::::::::::::::

.::::::::::::::::::::::::: c .• :

stamp An arbitrary ID the caller node may generate

machinename The caller's host name

uid The caller's effective user ID

giLl The caller's effective group ID

giLls A counted array of group IDs containing the caller as a
member.

The verifier accompanying the credentials should be AUTH_UNIX.

The discriminate value of the response verifier received in the server's reply
message may beAUTH_NULL or AUTH_SHORT.

For AUTH_SHORT, the bytes of the response verifier's string encode an
auth_opaque structure. This new auth_opaque structure may now be passed to
the server instead of the original A UTH _ UNIX flavor credentials. The server
keeps a cache that maps shorthand auth _opaque structures (passed back in a
AUTH_SHORTstyle response verifier) to the caller's original credentials. The
caller can save network bandwidth and server CPU cycles by using the new
credentials.

The server may flush the shorthand auth _opaque structure at any time. If this
happens, the remote procedure call message is rejected due to an
authentication error. The reason for the failure is
AUTH _ REJECfEDCRED. The caller may wish to try the original
AUTH_UNIX style of credentials.

6 -16 RPe Message Protocol

Record Marking Standard
Record marking (RM) is the process of delimiting one message from another
when RPC messages pass on top of a byte stream protocol (like TCP lIP). RM
helps detect and possibly recover from user protocol errors. This RMffCP lIP
transport passes RPC messages on TCP streams. One RPC message fits into
one RM record.

A record contains one or more record fragments. A record fragment is a
4-byte header followed by 0 to 231_1 bytes of fragment data. The bytes encode
an unsigned binary number; as with XDR integers, the byte order is from
highest to lowest. The number encodes two values:

• a boolean indicating whether the fragment is the last fragment of the record
(bit value 1 implies the fragment is the last fragment) and

• a 31-bit unsigned binary value that is the length in bytes of the fragment's
data.

The boolean value is the highest-order bit of the header; the length is the 31
low-order bits. (Note, this record specification is not in XDR standard form.)

RPC Protocol Specification 6-17

Portmapper Program Protocol
The portmapper program maps RPC program and version numbers to
UDP/IP or TCP/IP port numbers. This program makes dynamic binding of
remote programs possible.

This binding is desirable because the range of reserved port numbers is very
small and the number of potential remote programs is very large. By running
only the portmapper on a reserved port, the program can ascertain the port
numbers of other remote programs by querying the port mapper.

RPC Protocol
The XDR description language specifies the portmapper RPC protocol.

Port Mapper RPC Program Number: 100000
Version Number: 2
Supported Transports:

UDP/IP on port 111
RM/TCP/IP on port 111

RPC Procedures
The following subsections describe the RPC procedures of the portmapper.

6 -18 Portmapper Program Protocol

fi: : : ..
Do Nothing

Procedure 0
Version 2

Seta
Mapping

Procedure 1
Version 2

Unset a
Mapping

Procedure 2
Version 2

o. PMAPPROC_NULL () returns ()

This procedure performs DO work. By convention,
procedure zero of any protocol takes no parameters and
returns no results.

1. PMAPPROC_SET (prog,vers,prot,port) returns (resp)
unsigned prog;
uns igned vers;
uns i gned prot;
uns igned port;
boolean resp;

• When a program is first available on a node, it
registers with the portmapper program on the
same node.

• The program passes its program number prog,
version number vers, transport protocol number
prot, and the port port on which it awaits service
requests.

• The procedure returns resp, whose value is TRUE
if the procedure successfully established the
mapping or FALSE if it did not.

• The procedure refuses to establish a mapping if
one already exists for the tuple [prog, vers,prot J.

2. PMAPPROC_UNSET (prog,vers,dummyl,dummy2) returns (resp)
uns i gned prog;
uns i gned vers;
uns igned dummy 1 ; /* va lue a lways ignored * /
unsigned dummy2; /* value always ignored */
boolean resp;

When a program becomes unavailable, it should
unregister with the portmapper program on the same
node. The parameters and results have meanings
identical to those of PMAPPROC SET.

RPe Protocol Specification 6-19

LookUp
Mapping

Procedure 3
Version 2

Dumping
Mappings

Procedure 4
Version 2

3. PMAPPROC_GETPORT (prog,vers,prot,dummy) returns (port)

uns i gned prog;

unsigned vers;

uns i gned prot;

unsigned dummy;/* this value always ignored */

uns i gned port; /* zero means program not reg i stered * /

Given a program number prog, version number vers,
and transport protocol number prot, this procedure
returns the port number on which the program is
awaiting call requests. A port value of zero means the
program is not registered.

4. PMAPPROC_DUMP () returns (maplist)

struct maplist {

} ;

union switch (boolean) {

FALSE: struct { /* void, end of list */ };

TRUE: st ruct {

uns igned prog;

uns i gned vers;

unsigned prot;

uns i gned port;

struct maplist the_rest;
};

} map list;

This procedure enumerates all entries in the
portmapper's database. It takes no parameters and
returns a list of program, version, protocol, and port
values.

6-20 Portmapper Program Protocol

Indirect Call
Routine

Procedure 5
Version 2

5. PMAPPROC_CALLIT (prog,vers,proc,args) returns (port, res)
uns i gned prog;
uns i gned vers;
uns i gned proc;
string args<8K>;
uns igned port;
st ring res<8K>;

This procedure allows a caller to call another remote
procedure on the same node without knowing the remote
procedure's port number. Its supports broadcasts to
arbitrary remote programs via the well-known
portmapper's port.

Note: This procedure only sends a response if the
procedure was successfully executed and is silent (no
response) otherwise.

RPe Protocol Specification 6-21

6 - 22 Portmapper Program Protocol

7

YP Protocol Specification

The yP (Yellow Pages) distributed lookup service is a network service
providing read access to replicated databases. The client interface uses the
RPC (Remote Procedure Call) mechanism to access the yP database servers.

The yP operates on an arbitrary number of map databases. Map names
provide the lower of two levels of a naming hierarchy. Maps are grouped into
named sets called yP domains. yP domain names provide the second, higher
level of naming. Map names must be unique within a domain, but may be
duplicated in different yP domains. The yP client interface requires both a
map name and a yP domain name to access the yP information.

The yP achieves high availability by replication. Global consistency among the
replicated database copies should be addressed, though it is not covered by
the protocol. Every implementation should yield the same result at steady
state when a request is made of any yP database server. Update and
update-propagation mechanisms must be implemented to supply the required
degree of consistency.

YP Protocol Specification 7-1

Map Operations
Translating or mapping a name to its value is a very common operation
performed in computer systems. Common examples include translating a

• variable name to a virtual memory address,

• user name to a system ID or list of capabilities, and

• network host name to an internet address.

You can perform two fundamental read-only operations on a map: match and
enumerate. Match means to look up a name (a key) and return its current
value. Enumerate means to return each key-value pair, one at a time.

The yP supplies match and enumerate operations in a network environment.
It provides availability and reliability by replicating both databases and
database servers on multiple nodes within a single network. The database is
replicated, but not distributed; all changes are made at a single server and
eventually propagate to the remaining servers without locking. The yP is
appropriate for an environment in which changes to the mapping databases
occur approximately ten times per day.

Remote Procedure Call (RPC)
The RPC (Remote Procedure Call) mechanism defines a paradigm for
interprocess communication modeled on function calls. Clients call functions
that optionally return values. All inputs and outputs to the functions are in the
client's address space. A server program executes the function.

Using RPC, clients address servers by a program number (to identify the
application level protocol that the server speaks) and a version number.
Additionally, each server procedure has a procedure number assigned to it.

In an internet environment, clients must also know the server's host internet
address and the server's port number. The server listens for service
requests at ports associated with a particular transport protocol: TCP lIP or
UDPIIP.

7-2

The header files (included when the client interface functions are compiled)
typically define the format of the data structures used as inputs to and outputs
from the remotely executed procedures. Levels above the client interface
package need not know specifics about the RPC interface to the server.

External Data Representation (XDR)
The XDR (eXternal Data Representation) specification establishes standard
representations for basic data types (e.g., strings, signed and unsigned integers,
structures, and unions) in a way that allows them to be transferred among
nodes with varying architectures. XDR provides primitives to encode and
decode basic data types. Constructor primitives allow arbitrarily complex data
types to be made from the basic types.

The yP uses XDR's data description language to describe RPC input and
output data structures. Generally, the data description language looks like the
C language with a few extra constructs. One such extra construct is the
discriminated union. This construct is like a C language union in that it can
hold various objects; it differs in that it indicates which object it currently
holds. The discriminant is the first item across the network.

YP Protocol Specification 7 - 3

EXAMPLE:

union switch (long int) {

}

1: string exmpl_name<16>
0: unsigned int exmpl_error_code
default: struct {}

The first object (the discriminant) encoded or decoded is a long integer. If it
has the value one, the next object is a string. If the discriminant has the value
zero, the next object is an unsigned integer. If the discriminant takes any other
value, do not encode or decode any more data. The string data type in the
XDR data definition language adds the ability to specify the maximum number
of elements in a byte array or string of potentially variable size. For example

string domain<YPMAXDOMAIN>;

states that the byte sequence domain can be less than or equal to
YPMAXDOMAIN bytes long.

An additional primitive data type is a boolean that takes the value one to
mean TRUE and zero to mean FALSE.

7-4

YP Database Servers

Maps and Map Operations

Map Structure
Maps are named sets of key-value pairs. Keys and their values are counted
binary objects and may be ASCII information. The client applications that
retrieve data from a map interpret the data comprising the map. The yP has
neither syntactic nor semantic knowledge of the map contents. Neither does
the yP determine or know any map's name. The yP clients manage the map
names. An administrator outside the yP system should resolve conflicts in the
map name space.

yP maps are typically implemented as files or databases in a database
management system. The design of the yP map database is an implementation
detail that the protocol does not specify.

Match Operation
The yP supports an exact match operation in the YPPROC _MATCH
procedure. If a match string and a key in the map are exactly the same, the
value of the key is returned. The yP does not support pattern matching, case
conversion, or wild carding.

Map Entry Enumeration
You can obtain the first key-value pair in a map with YPPROC _FIRST and
the next key-value pair with YPPROC _NEXT. To retrieve each entry once,
call YPPROC _FIRST once and YPPROC _NEXT repeatedly until the return
value indicates there are no more entries in the map. Making the same calls
on the same map at the same yP database server enumerates all entries in the
same order. The actual order, however, is unspecified. Enumerating a map at
a different yP database server does not necessarily return entries in the same
order.

YP Protocol Specification 7 - 5

Entire Map Retrieval
The YPPROC _ALL operation retrieves all key-value pairs in a map with a
single RPC request. This operation is faster than map entry enumeration and
it is more reliable since it uses TCP. Ordering is the same as when
enumeration is applied.

Map Update
Updating the contents of a yP map is an implementation detail that is outside
the yP service specification.

Master and Slave YP Database Servers
Each map has one yP database server called the map's master. Map
updates occur only on the yP master server. An updated map should transfer
from the master to the rest of the yP database servers (slave servers).

Each map may have a different yP database server as its master, all maps may
have the same master, or any other combination may exist. Implementation
and administrative policy determine how to configure the map masters.

Map Propagation and Consistency
Map propagation is the process of copying map updates from the master to
the slaves. The protocol does not specify technology or algorithms for map
propagation. Map propagation may be entirely manual; for example, you can
copy the maps from the master to the slaves at a regular interval or when a
change is made on the master.

To escape from the idiosyncrasies of any particular implementation, all maps
should be uniformly timestamped.

Functions to Aid in Map Propagation
The yP protocol does not specify the way a map transfers from one !).:!I er to
another. One possibility is to transfer them manually. Another is for . ~Je yp
database server to activate another process to perform the map tr~tlsfer. A

7 - 6 YP Database Servers

third alternative is for a server to enumerate a recent version of the map using
the normal client map enumeration functions.

The YPPROC _XFR procedure requests the yP server to update a map and
permits the actual transfer agent (a server process) to call back the requestor
with a summary status.

YP Domains
yP domains provide a second level for naming within the yP subsystem. Since
they are names for sets of maps, you should create separate map name spaces.
yP domains provide an opportunity to divide large organizations into
administrable portions and the ability to create parallel, non-interfering test
and production environments.

Ideally, the yP domain of interest to a client is associated with the invoking
user; however, it is useful for client nodes to be in a default yP domain.
Implementations of the yP client interface should supply some mechanism for
telling processes the yP domain name they should use. This mechanism is
necessary

• because the yP domain concept is not essential to most applications and

• so you can write programs that are insensitive to both location and the
invoking user.

YP Protocol Specification 7 - 7

YP Non-features
The following capabilities are not included in the current yP protocols.

Map Update within the VP
Direct modification to a yP map is outside the yP subsystem.

Version Commitment Across Multiple Requests
The yP protocol keeps the yP database server stateless with regard to its
clients. Therefore, you do not have a facility for requesting a server to
pre-allocate any resource beyond that required to service any single request.
You do not have a way to commit a server to use a single version of a map
while trying to enumerate that map's entries. Using YPPROC _ALL should
help you avoid problems.

Guaranteed Global Consistency
No facility exists for locking maps during the update or propagation phases;
therefore, map databases will probably be globally inconsistent during these
phases. The set of client applications for which the yP is an appropriate
lookup service must be tolerant of transient inconsistencies.

7-8 YP Database Servers

Access Control
The yP database servers do not attempt to restrict access to the map data.
They will service all syntactically correct requests.

YP Database Server Protocol Definition
This section describes the protocol version 2.

RPC Constants
All numbers are in decimal.

YPPROG 100004

YPVERS 2

yP database server protocol
program number

Current yP protocol version

YP Protocol Specification 7 - 9

Other Manifest Constants
All numbers are in decimal.

YPMAXRECORD 1024

YPMAXDOMAIN 64

YPMAXMAP64

YPMAXPEER 64

7-10 YP Database Servers

The total maximum size of key and
value for any pair

The absolute sizes of the key and
value may divide this maximum
arbitrarily

The maximum number of characters
in a yP domain name

The maximum number of characters
in a map name

The maximum number of characters
in a yP host name

Remote Procedure Return Values
This section presents the return status values returned by several of the yP

remote procedures. All numbers are in decimal.

ypstat typedef enum {
YP_TRUE
YP_NOMORE
YP_FALSE
YP_NOMAP
YP_NODOM
YP_NOKEY
YP_BADOP
YP_BADDB
YP_YPERR
YP_BADARGS
YP_VERS

} ypstat

= 1,
2,
0,

-1,
-2,
-3,
-4,

= -5,
= -6,
= -7,
= -8

/* General purpose success code. */
/* No more entries in map. */
/* General purpose failure code.*/
/* No such map in domain. */
/* Doma i n not supported. * /
/* No such key in map. */
/* Invalid operation. */
/* Server database is bad. */
/* YP server error. */
/* Request arguments bad. */
/* YP server version mismatch.*/

YP Protocol Specification 7 - 11

ypxfrstat typedef enum {
YPXFR_SUCC 1,
YPXFR_AGE 2,
YPXFR_NOMAP -1,
YPXFR_NODOM -2,
YPXFR_RSRC -3,
YPXFR_RPC -4,
YPXFR_MADDR -5,
YPXFR_YPERR -6,
YPXFR_BADARGS= -7,
YPXFR_DBM -8,
YPXFR_FILE -9,
YPXFR_SKEW = -10,
YPXFR_CLEAR = -11,
YPXFR_FORCE = -12,
YPXFR_XFRERR = -13,
YPXFR_REFUSED= -14

} ypxfrstat

7 -12 YP Database Servers

/* Success * /
/* Master's version not newer */

/* Cannot find server for map */
/* Domain not supported */
/* Local resource alloc failure */
/* RPC failure talking to server */
/* Cannot get master address */
/* YP server/map db error */
/* Request arguments bad */
/* Local database failure */
/* Local file I/O failure */
/* Map version skew in transfer */
/* Cannot clear local ypserv */
/* Must override defaults */
/* ypxfr error */
/* ypserv refused transfer */

Basic Data Structures
This section defines the data structures used as inputs to and outputs from the
yP remote procedures.

domainname

keydat

mapname

peemame

va Ida t

ypmaplist

ypmap yanns

typedef string domainname<YPMAXDOMAIN>

typedef string keydat<YPMAXRECORD>

typedef string mapname<YPMAXMAP>

typedef string peername<YPMAXPEER>

typedef string valdat<YPMAXRECORD>

typedef struct {
mapname
ypmaplist *

} ypmap 1 ist

typedef struct {
domainname
mapname
unsigned long ordernum
peername

} ypmap_parms

This structure contains parameters giving
information about map mapname within yP
domain domainname.

The peemame element is the name of the map's
yP master database server.

If any of the three strings is null, the information
is unknown or unavailable.

The ordemum element contains a binary value
representing the map's creations time (order
number); if unavailable, this number is zero.

typedef struct {
domainname
mapname
keydat
} ypreq_key

YP Protocol Specification 7 -13

ypre~nokey

ypresp_all

ypresp _key_val

ypresp _ maplist

ypresp_val

yprespyfr

7 -14 YP Database Servers

typedef struct {
domainname
mapname

} ypreq_nokey

typedef struct {
struct ypmap_parms map_parms
unsigned long transid
unsigned long prog
unsigned short port

} ypre~xfr

typedef union switch (boolean more) {
TRUE:

ypresp_key_val
FALSE:

struct { }
} ypresp all

typedef struct {
ypstat
keydat
valdat

} ypresp_key_va 1

typedef struct {
ypstat
ypmap 1 ist *

} ypresp_map 1 i st

typedef struct {
ypstat
peername

} ypresp master

typedef struct {
ypstat
unsigned long ordernum

} ypresp order

typedef struct {
ypstat
valdat

} ypresp_va 1

typedef struct {
unsigned long transid
ypxfrstat xfrstat

} ypresp_xfr

YP Database Server Remote Procedures
This section contains a specification for each function you can call as a remote
procedure. The XDR data definition language describes the input and output
parameters.

Do Nothing

Procedure 0
Version 2

Do You Serve
This Domain?

Procedure 1
Version 2

Answer Only If
You Serve This
Domain

Procedure 2
Version 2

O. YPPROC_NULL () returns ()

This procedure takes no arguments, does no work, and
returns nothing. It is made available in all RPC services
to allow server response testing and timing.

1. YPPROC DOMAIN (domain) returns (serves)
domainname domain;
boolean serves;

This procedure returns TRUE if the server serves domain
or FALSE if it does not.

This procedure allows a potential client to determine if a
given server supports a certain yP domain.

2. YPPROC DOMAIN NONACK (domain) returns (serves)
doma i nname doma in;
boo lean serves;

This procedure returns TRUE if the server serves
domain; otherwise, it does not return.

This function is useful in a broadcast environment when
you want to restrict the number of useless
messages.

If you call this function, the client interface
implementation must regain control in the negative case
(e.g., by means of a timeout on the response).

Note: The current implementation returns in the FALSE
case by forcing an RPC decode error.

YP Protocol Specification 7 - 15

Return Value of
a Key

Procedure 3
Version 2

Get First
Key-Value
Pair in Map

Procedure 4
Version 2

Get Next
Key-Value Pair
in Map

Procedure 5
Version 2

Transfer Map

3. YPPROC_MATCH (req) returns (resp)
ypreq_key req;
ypresp_val resp;

This procedure returns the value associated with the
datum keydat in req.

If resp.stat has the value YP_TRUE, the value data are
returned in the datum valdat.

4. YPPROC FIRST (req) returns (resp)
ypreq_nokey req;
ypresp_key_val resp;

If resp.stat has the value yP _TRUE, this procedure
returns the first key-value pair from the map named in
req to the keydat and valdat elements within resp.

When status contains the value YP_NOMORE, the map
is empty.

5. YPPROC_NEXT (req) returns (resp)
ypreq_key req;
ypresp_key_val resp;

If resp.stat has the value yP _TRUE , this procedure
returns the key-value pair following the key-value named
in req to the keydat and valdat elements within resp.

If the passed key is the last key in the map, the value of
resp.stat is yP _NOMORE.

6. YPPROC_XFR (req) returns (resp)
ypreq_xfr req;
ypresp_xfr resp;

7 -16 YP Database Servers

Procedure 6
Version 2

Re-initialize
Internal
State

Procedure 7
Version 2

Get All
Key-Value Pairs
in Map

The yP protocol specification does not declare what
action is taken in response to this request. The action is
implementation dependent.
Use this procedure
• to indicate to the seIVer that a map should be updated

• to allow the actual transfer agent (whether it be the
yP seIVer process, or some other process)to call back the
requestor with a summary status.

The transfer agent should call back the program running
on the requesting host with program number req.prog,
program version 1, and listening at port req.port.

The procedure number is 1, and the callback data is of
type ypresp _xfr.

The transid field should turn around req.transid, and the
xfrstat field should be set appropriately.

7. YPPROC_CLEAR () returns ()

The yP protocol specification does not declare what
action is taken in response to this request. The action is
implementation dependent.

Different seIVer implementations may have different
amounts of internal state (e.g., open files or the current
map). This request signals that all such state information
should be erased.

8. YPPROC_ALL (req) returns (resp)
ypreq_nokey req;
ypresp_all resp;

YP Protocol Specification 7 - 17

Procedure 8
Version 2

Get Map
Master Name

Procedure 9
Version 2

Get Map Order
Number

Procedure 10
Version 2

Get All Maps in
Domain

Procedure 11
Version 2

This procedure transfers all key-value pairs from a map
with a single RPC request.

When the union's discriminant is FALSE, no more
key-value pairs are returned.

The status field of the last ypresp _key _val structure
should be examined to determine why the flow of
returned key-value pairs stopped.

9. YPPROC_MASTER (req) returns (resp)
ypreq_nokey req;
ypresp_master resp;

This procedure returns the yP master server's name
inside the resp structure.

10. YPPROC_ORDER (req) returns (resp)
ypreq_nokey req;
ypresp_order resp;

This procedure returns a map's order number as an
unsigned long integer to indicate when the map was built.
This quantity represents the number of seconds since
00:00:00 January 1, 1970, GMT.

11. YPPROC MAPlIST (req) returns (resp)
doma inflame req;
ypresp_maplist resp;

This procedure returns a list of all the maps in a yP
domain.

7 -18 YP Database Servers

YP Binders
For any network service to work, potential clients must be able to find the
servers. This section describes the yP binder, an optional element in the yP
subsystem that supplies yP database server addressing information to
potential yP clients.

To address a yP server in the Internet environment, a client must know the

• server's internet address and

• port at which the server is listening for service requests.

This addressing information is sufficient to bind the client to the server.

One way to provide the addressing information is to allocate one entity on
each yP client to keep track of the yP servers and provide that information
to potential yP clients on request. A yP binder is useful if

• it is easier for a client to find the yP binder than to find a yP database
server and

• the yP binder can find a yP database server.

Assume the following statements about yP binders to be true.

• A yP binder should be present at every network node, and because of this,
addressing the yP binder is easier than addressing a yP database server.
The scheme for finding a local resource is implementation specific.
However, given that a resource is guaranteed to be local, there may be an
efficient way of finding it.

• The yP binder should be able to find a yP database server; however, the
means of doing so is probably complicated, time-consuming, or
resource-consuming.

If either of these assumptions is incorrect, your implementation of yP binders
is probably not a good solution for a yP binder.

YP Protocol Specification 7 - 19

If a yP binder is implemented, it can provide added value beyond the binding.
For example, it can verify the binding is correct and the yP database server is
working. The degree of certainty in a binding that the yP binder gives to a
client is a parameter that can be configured appropriately in the
implementation.

YP Binder Protocol Definition
This section describes version 2 of the protocol.

RPC Constants
All numbers are decimal.

YPBINDPROG 100007 yP binder protocol program number

YPBINDVERS 2 Current yP binder protocol version

7 - 20 YP Binders

Other Manifest Constants
All numbers are decimal.

64
The maximum number of characters in a yP domain name

This constant is identical to the constant defined above in
the "YP Database Server Protocol" section.

ypbindJesptype enum ypbind_resptype {
YPBIND_SUCC_VAl = 1,
YPBIND_FAIl_VAl = 2

ypbinderr

}

This constant discriminates between success responses
and failure responses to a YPBINDPROC_DOMAIN
request.
typedef enum {

YPBIND ERR ERR = 1,/* Internal error */
YPBIND-ERR-NOSERV = 2,/* No bound server for domain */
YPBIND-ERR-RESC = 3 /* Can't allocate system resource */

} ypb i nderr -

The error case of most interest to a yP binder client
is YPBIND ERR NOSERV. This error means the
binding request cannot be satisfied because the yP
binder does not know how to address any yP
database server in the named yP domain.

YP Protocol Specification 7 - 21

Basic Data Structures
This section defines the data structures used as inputs to and outputs from the
yP binder remote procedures.

domainname

ypbindJesp

7 - 22 YP Binders

typedef string domainname<YPMAXDOMAIN>

This structure is identical to the domainname
string defined above in the "YP Database Server
Protocol" section.
typedef struct {

unsigned long ypbind_binding_addr
unsigned short ypbind_binding_port

} ypbind_binding

This structure contains the information necessary
to bind a client to a yP database server in the
Internet environment.

The element ypbind _binding addr holds the host
IP address (4 bytes), and ypbind _ binding-port
holds the port address (2 bytes).

Both IP address and port address must be in
ARPA network byte order (most significant byte
first) regardless of the host node's native
architecture.
typedef struct {

union switch (enum ypbind_resptype status) {
YPBIND SUCC VAL:

ypbindJ;inding
YPBIND_FAIL_VAL:

ypbinderr
default:

{ }
}

} ypbind_resp

This structure is the response to a
YPBINDPROC_DOMAIN request.

typedef struct {
domainname
ypbind_binding
version

} ypb i nd _ setdom

This structure is the input data structure for the
YPBINDPROC _ SETDOM procedure.

YP Protocol Specification 7 - 23

YP Binder Remote Procedures
The XDR data definition language describes the yP binder remote
procedures.

Do Nothing

Procedure 0
Version 2

Get Current
Binding for a
Domain

Procedure 1
Version 2

Set Domain
Binding

Procedure 2
Version 2

7 - 24 YP Binders

O. YPBINDPROC_NULL () returns ()

This procedure does no work. It is made available in all
RPC services to allow server response testing and timing.

1. YPBINDPROC_DOMAIN (domain) returns (resp)
domainname domain;
ypbind_resp resp;

This procedure returns the binding information
necessary to address a yP database server within the
Internet environment.

2. YPBI NDPROC_SETDOM (setdom) returns ()
ypbind_setdom setdom;

This procedure instructs a yP binder to set its current
binding using the passed information. It therefore
provides a means of overriding the process the yP binder
usually uses to bind to a yP server.

Index

A

Access Control, YP, 7-9
Addressing Information, YP,
7-19
Arbitrary Data Structures,
XDR, 5-7
Arbitrary Data Types, RPC,
3-13
Arrays, Fixed, 5-21, 5-41
ASCII Source Files, YP, 2-7
Assign Program Numbers,
6-7
Authentication, RPC, 3-36,
6-3, 6-6, 6-14

B

NULL, 6-15
Parameter Specification, 6-14
UNIX, 6-15

Bad Union, 4-40
Basic Data Structures, YP,
7-13,7-22
Batching, RPC, 3-31, 6-9
Binders, YP, 7-19

Protocol Definition, 7-20
Remote Procedures, 7-24

Block Size, XDR, 5-37
Booleans, XDR, 5-38
Broadcast RPC, 3-28, 3-30,
6-9
Byte Arrays, XDR, 5-16

c
Callback Procedures, RPC, 3-47
callrpc(), 3-7
Client Side, RPC, 3-25, 3-36, 6-2
clnt_call(), 3-57
clnt_destroy(), 3-61
clntJreeres(),3-61
clnt-Keterr(), 3-62
clntyerrno(),3-63
clntyerror(),3-63
clntraw _create(),3-65
clnttcp _create(), 3-65
clntudp _create (),3-66
Constants

ypbindJesptype, 7-21
ypbinderr, 7-21
YPBINDVERS 2, 7-20
YPAlAJrAt4P64, 7-10
YPMAXRECORD 1024,7-10
YPPR9G 100004,7-9

Constants, Manifest, 7-10, 7-21
Constants, YP, 7-9, 7-20
Constructed Data Type Filters,
XDR, 5-14
Counted Arrays, XDR, 5-41
Counted Byte Strings, XDR, 5-40
Credentials, RPC Authentication,
6-6

Index-1

D

Data Structures
keydat, 7-13
mapname, 7-13
valdat, 7-13
ypmap yarms, 7-13
ypmap/ist, 7-13
ypreq_key, 7-13
ypreq_nokey, 7-14
ypreq_x[r, 7-14
ypresp _all, 7-14
ypresp_key_va/, 7-14
ypresp _ map/ist, 7-14
ypresp _master, 7-14
ypresp_orde~ 7-14
ypresp_va/, 7-14
ypresp _xfr, 7-14

Database Servers, YP,
7-5-7-6, 7-15
Declarations

fIxed-array, 4-33
pointer, 4-33
simple, 4-33
variable-array, 4-33

Deserializing, 3-13, 5-9
Discriminated Unions

XDR, 5-23, 5-42
YF,7-3

Documentation
Contents, 1-2
Conventions, 1-4
Guide, 1-5, 1-7
Overview, 1-1

domainname, 7-22
Domains, YP, 7-7
Double Precision, XDR,
5-38

Index-,2

E

Enumerations
XDR, 5-13,5-38
YP,7-5

Error Messages

F

General Syntax Errors, 4-43
Illegal Characters, 4-42
Missing Quotes, 4-43
String Declaration, 4-41
U nkown Types, 4-42
Void Declarations, 4-41

Filter Routines, XDR, 5-7
Filters

Constructed Data Type, 5-14
Enumeration, 5-13
Floating Point, 5-13
Number, 5-12

Fixed Arrays, XDR, 5-21,5-41
Floating Point, XDR, 5-13, 5-38

G

get_myaddress(),3-68
gettransient(), 3-68

I/O Streams, XDR, 5-30
inetd, 3-40
inetd.conf() Entry Formats, 3-40
inetd.conf() Fields, 3-41
Integers

Signed, 5-37
Unsigned, 5-38
Variable Array, 3-15

J

Justification, XDR, 5-2

K

keydat, 7-13
Keyword, 4-39

L

Linked Lists, XDR, 5-45

M

Main Client Program, 4-6
Manifest Constants, YP,
7-10, 7-21
Map

Consistency, 7-6, 7-8
Operations, 7-2, 7-5
Propagation, 7-6
Retrieval, 7-6
Structure, 7-5
Update, 7-6,7-8

n1apnan1e,7-13
Master Servers, YP, 7-6
Match Operation, YP, 7-5
Memory Allocation, XDR,
3-22
Memory Streams, XDR, 5-31
Message Authentication,
RPC,6-3
Missing Specifications,
XDR, 5-43
Multiple Requests, YP, 7-8

N

Network Pipes, 5-4
NFS

Clients, 2-2

Description, 2-1
Servers, 2-1

Non-filter Primitives, XDR, 5-28
NULL Authentication, RPC, 6-15
Number Filters, XDR, 5-12

o
Opaque Data, XDR, 5-21, 5-40
Opaque Declarations, 4-40
opaque _ auth, 6-6
Operation Directions, XDR, 5-29

p

Parameter Specification, RPC
Authentication, 6-14
pn1ap~ehnaps(),3-69
pn1ap ~etport(), 3-69
pn1ap_lmtcall(),3-70
pn1ap _set (), 3-71
pn1ap_unset(),3-71
Pointer Semantics, XDR, 5-27
Pointers, XDR, 5-25
Portable Data Format, XDR, 5-5
Portmap

Procedure 1 ,6-19
Procedure 2 , 6-19
Procedure 3 , 6-20
Procedure 4 , 6-20
Procedure 5 ,6-21
Protocol Specification, 6-18

Primitives
Non-filter, 5-28
Record Streams, 5-33
XDR, 5-12,5-43

Program Numbers, Assignment
of, 6-7
Programming with RPC, 3-1
Programming with RPCGEN, 4-1
Protocol Specification

Portmap, 6-18
RPC, 6-1

Index-3

R

RPC Message, 6-10
RPC Requirements, 6-4
XDR,5-1
YP,7-1
yP Binders, 7-20

Record Marking Standard,
5-51, 6-17
Record Streams

Primitives, 5-33
TCP/lP, 5-31
XDR,5-31

registerrpc(),3-10, 3-72
Remote Procedure, 4-5
Remote Procedure Call
Protocol Compiler, 4-2
Remote Procedure Number,
6-4
Remote Procedure Return
Values, 7-11
Remote Procedures, 6-4

Portmap, Dumping
Mappings, 6-20

Portmap, Indirect Call
Routine, 6-21

Portmap, Look Up
Mapping, 6-20

Portmap, Procedure 1 , 6-19
Portmap, Procedure 2 , 6-19
Portmap, Procedure 3,6-20
Portmap, Procedure 4,6-20
Portmap, Procedure 5,6-21
Portmap, Set Mapping, 6-19
Portmap, Unset Mapping,

6-19
yP Binder, Do Nothing, 7-24
yP Binder, Get Current

Binding, 7-24
yP Binder, Procedure 0 ,

7-24
yP Binder, Procedure 1 ,

Index-4

7-24
yP Binder, Procedure 2 , 7-24
yP Binder, Set Domain Binding,

7-24
YP, Answer if Serve Domain,

7-15
YP, Do Nothing, 7-15
YP, doniainname, 7-22
YP, Get All Key-Value Pairs,

7-18
YP, Get All Maps in Domain,

7-18
YP, Get First Key-Value Pair,

7-16
YP, Get Map Master Name, 7-18
YP, Get Map Order Number,

7-18
YP, Get Next Key-Value Pair,

7-16
YP, Procedure 0,7-15
YP, Procedure 1 , 7-15
YP, Procedure 10, 7-18
YP, Procedure 11 , 7-18
YP, Procedure 2 , 7-15
YP, Procedure 3 , 7-16
YP, Procedure 4, 7-16
YP, Procedure 5, 7-16
YP, Procedure 6, 7-17
YP, Procedure 7, 7-17
YP, Procedure 8, 7-18
YP, Procedure 9 , 7-18
YP, Re-initialize Internal State,

7-17
YP, Return Value, 7-16
YP, Serve this Domain?, 7-15
YP, Transfer Map, 7-17
YP,ypb~_seuion1, 7-23
ypstat, 7-11

Remote Procedures, YP, 7-15,
7-22,7-24
Remote Program Number, 6-4
Remote Program Version
Number, 6-4

svce" _ auth (), 3-80
svce"_decode(),3-81
svce"_noproc(),3-81
svce" Jloprog(), 3-82
svce" yrogvers(), 3-82
svce" _ systeme"(), 3-83
svce"_weakauth(),3-83
svcfd_create(),3-84
svcraw _create(), 3-85
svctcp _create(), 3-86
XDR,5-7
xdr _accepted _reply(), 3-88
xdr _a"ay(), 5-17
xdr_authunixyarms(),3-88
xdr_bytes(),5-16
xdr_callhdr(),3-89
xdr_callmsg(),3-89
xdr _ char(), 5-54
xdrJree(),5-56
xdr _long(), 5-5, 5-8
xdr_opaque(),5-21
xdr _opaque _auth(), 3-90
xdr ymap(), 3-90
xdrymapl~t(),3-91
xdr JJOinter(),5-59
xdr Jejected Jeply(), 3-91
xdrJep~msg(),3-91
xdT_u_char(),5-61
xdnec_eof(),5-33
xprt Jegister(), 3-93
xprt _ unregister(), 3-93

RPC
Additional Features, 3-28
Arbitrary Data Types, 3-13
Authentication, 3-36, 6-6,

6-14-6-15
Batching, 3-31, 6-9
Booleans,4-35
Broadcast, 3-28, 3-30, 6-9
Callback Procedures, 3-47
callrpc(), 3-7
Client Side, 3-25, 3-36, 6-2
Declarations, 4-33

Remote Programs, 6-4
Response Verifier, RPC
Authentication, 6-6
musers(),3-5
Routines

callrpc(), 3-7
clnt_call(), 3-57
clnt_create(),3-60
clnt_destroy(),3-61
clntJreeres(), 3-61
cln(gete"(), 3-62
clntyermo(), 3-63
clntye"or(),3-63
clnt _spcreatee"or(), 3-64
clnt_sperrno(),3-64
clnt_spe"or(),3-65
clntraw _create (), 3-65
clnttcp _create(), 3-65
clntudp _ create(), 3-66
Filter, 5-7
get _myaddress(), 3-68
gettransient(), 3-68
pmap~etmaps(),3-69
pmap~etport(),3-69
pmap _ rmtcall (), 3-70
pmap_set(),3-71
pmap_unset(),3-71
registerrpc(),3-10, 3-72
musers(), 3-5
RPC, 3-4
Stream Creation, 5-8
svc _destroy(), 3-73
svcJds(),3-74
svcJdset(),3-75
svcJreeargs(),3-75
svc~etargs(),3-75
svc ~etcaller(), 3-76
svc ~etreq(), 3-76
svc ~etreqset(), 3-77
svc Jegister(), 3-78
svc_run(),3-79
svc _sendrep~(), 3-79
svc _ unregister(), 3-80

Index-S

Definitions, 4-28
Description, 2-3, 3-3
inetd, 3-40
Layers, 3-3

Layers, Highest, 3-4
Layers, Intermediate, 3-6
Layers, Lowest, 3-18
Message Authentication, 6-3
Message Protocol
Specification, 6-10
NULL Authentication, 6-15
Opaque Data, 4-36
Port map Protocol
Specification, 6-18
Program Numbers, 3-11, 6-7
Programming, 3-1
Programs, 4-32
Protocol Requirements, 6-4
Protocol Specification, 6-1,
6-10
Record Marking Standard,
6-17
Routines, 3-4
rpc _ createerr, 3-73
rq_cred, 3-37
Semantics, 6-3
Server Side, 3-19, 3-28, 3-37,
6-2
TCP, 3-44
Transports, 6-3
UNIX Authentication, 6-15
YP,7-2
RPC Constants, YP, 7-9,
7-20
RPC Protocol Specification,
4-4
rpc _createerr, 3-73
RPCGEN
Array of Pointers, 4-39
Bad Union, 4-40
C-Prepr~or,4-26
Command Line Error

Index",

Messages, 4-37
Error Messages, 4-37
General Syntax Errors, 4-43
Illegal Characters, 4-42
Missing Quotes, 4-43
Parsing Error Messages, 4-38
Unknown Types, 4-42
Void Declarations, 4-41
RPCGEN Files
client side file, 4-10, 4-13
client side subroutine file, 4-10
client side subroutines file, 4-16
header file, 4-10, 4-12
protocol description file, 4-10
server side function file, 4-10,
4-17,4-19
server side skeleton file, 4-10
XDR routine file, 4-10, 4-20
RPCGEN Options
-c,4-24
-m,4-24
-0,4-25
-s,4-24
-u,4-25
rq_cred, 3-37
RUSERSPROC_BOOL(),3-22

s
Semantics, RPC, 6-3
Serializing, 3-13, 5-9
Server Side, RPC, 3-19, 3-28,
3-37,6-2
Slave Servers, YP, 7-6
Source Files, YP, 2-7
Streams

Access, 5-30
Creation Routines, XDR, 5-8
1/0,5-30
Implementation of, 5-34
Memory, 5-31
Record (TCP /lP), 5-31

Strings, XDR, 5-15

Structures, XDR, 5-42
svc_destroy(),3-73
svcJds(),3-74
svcJreeargs(),3-75
svc-Eetargs(),3-75
svc -Eetcaller(), 3-76
svc-Eetreq(), 3-76
svc Jegister(), 3-78
svc_lUn(),3-79
svc _sendreply(), 3-79
svc_unregister(), 3-80
svcen-_authO, 3-80
svcen-_decode(),3-81
svcen-_noproc(), 3-81
svcen-_ noprog(), 3-82
svcen-yrogvers(),3-82
svcen-_ systemen-(), 3-83
svcen-_ weakauth (), 3-83
svcfd_create(),3-84
svcraw _ create(), 3-85
svctcp _create(), 3-86

T

TCP, 3-44
Transports, RPC, 6-3

u
UNIX Authentication, RPC,
6-15

v
valdat, 7-13
Verifier, RPC
Authentication, 6-6
Version Commitment, YP,
7-8
Voids, 4-36

X

XDR
Arbitrary Data Structures, 5-7
Block Size, 5-37
Booleans, 5-38
Byte Arrays, 5-16
Constants, 4-32
Constructed Data Type Filters,

5-14
Counted Arrays, 5-41
Counted Byte Strings, 5-40
Description, 2-5
Discriminated Unions, 5-23, 5-42
Double Precision, 5-38
Enumeration Filters, 5-13
Enumerations, 4-30, 5-38
Filter Routines, 5-7
Fixed Arrays, 5-21, 5-41
Floating Point, 5-38
Floating Point Filters, 5-13
I/O Streams, 5-30
Integers, 5-37
Justification, 5-2
Library, 5-7
Linked Lists, 5-45
Memory Allocation, 3-22
Memory Streams, 5-31
Missing Specifications, 5-43
No Data Required, 5-14
Non-filter Primitives, 5-28
Number Filters, 5-12
Object, 5-34
Opaque Data, 4-36, 5-21, 5-40
Operation Directions, 5-29
Pointer Declarations, 4-35
Pointer Semantics, 5-27
Pointers, 5-25
Portability, 5-5, 5-7
Primitives, 5-12, 5-43
Protocol Specification, 5-1
Record Marking Standard, 5-51
Record Streams, 5-31,5-33

Index-7

5-8

Routines, 5-7
Standard, 5-37
Stream Access, 5-30
Stream Creation Routines,

Stream Implementation, 5-34
Streams, 5-30
Strings, 4-35, 5-15
Structures, 4-28, 5-42
Unions, 4-29
Variable-Length Array

Declarations, 4-34
YP,7-3

xdr _accepted Jeply(), 3-88
xdr_anray(),5-17
xdr_authunixyarms(),3-88
xdr_bytes(),5-16
xdr_caUhdT(),3-89
xdr_caUr.nsg(),3-89
xdr _long(), 5-5, 5-8
xdr_opaque(),5-21
xdr_opaque_auth(),3-90
xdr ymap(), 3-90
xdr ymaplist(),3-91
xdr Jejected_reply(),3-91
xdTJeplyr.nsg(),3-91
xdnrec_eof(),5-33
xprt_register(),3-93
xprt _ unregister(), 3-93

y

yp
Access Control, 7-9
Addressing Information, 7-19
ASCII Source Files, 2-7
Basic Data Structures, 7-13,

7-22
Binder Protocol Definition,

7-20
Binder Remote Procedures,

7-24
Binders, 7-19

Index-8

Constants, 7-9, 7-20
Database Servers, 7-5-7-6, 7-15
Description, 2-6, 7-1
Discriminated Unions, 7-3
Domains, 7-7
Enumerations, 7-5
Manifest Constants, 7-10, 7-21
Map Consistency, 7-6, 7-8
Map Operations, 7-2, 7-5
Map Propagation, 7-6
Map Retrieval, 7-6
Map Structure, 7-5
Map Update, 7-6, 7-8
Master Servers, 7-6
Match Operation, 7-5
Multiple Requests, 7-8
Procedure 0 , 7-15
Procedure 1 , 7-15
Procedure 10, 7-18
Procedure 11 , 7-18
Procedure 2, 7-15
Procedure 3 , 7-16
Procedure 4, 7-16
Procedure 5, 7-16
Procedure 6, 7-17
Procedure 7 , 7-17
Procedure 8 ,7 -18
Procedure 9, 7-18
Protocol Specification, 7-1
Remote Procedure Return

Values, 7-11
Remote Procedures, 7-15, 7-22,

7-24
RPC, 7-2
RPC Constants, 7-9, 7-20
Slave Servers, 7-6
Source Files, 2-7
Version Commitment, 7-8
XDR,7-3

yP Binder
Procedure 0, 7-24
Procedure 1 , 7-24
Procedure 2, 7-24

ypbiru(resptype, 7-21
ypbind_setdom, 7-23
ypbinderr, 7-21
YPBINDVERS 2, 7-20
ypmapyarms, 7-13
ypmapZist, 7-13
YPMAXMAP 64, 7-10
YPMAXRECORD 1024, 7-10
YPPROC MATCH, 7-5
YPPROG-100004, 7-9
ypreq_key,7-13
ypreq_nokey, 7-14
ypreq_xfr,7-14
ypresp_all, 7-14
ypresp_key_va47-14
ypresp _ mapZist, 7-14
ypresp _master, 7-14
ypresp_orde~ 7-14
ypresp_vaZ, 7-14
ypresp _ xfr, 7-14
ypstat, 7-11

Index-9

Index-tO

~~ HEWLETT
a!aI PACKARD

ir~;~~~1:r E0989 11111111 ~IIIIIIIIIIIIIIIIIIII ~IIII ~IIIIII~ 111I11111111 ~II
81013-90002

